In the present paper, a problem of Ioana Mihaila is negatively answered on the invertibility of composition operators on Riemann surfaces, and it is proved that the composition operator Cp is Predholm if and only if i...In the present paper, a problem of Ioana Mihaila is negatively answered on the invertibility of composition operators on Riemann surfaces, and it is proved that the composition operator Cp is Predholm if and only if it is invertible if and only if p is invertible for some special cases. In addition, the Toeplitz operators on ∧1 2, a(M) for Riemann surface M are defined and some properties of these operators are discussed.展开更多
基金Supported partially by National Natural Science Foundation of China
文摘In the present paper, a problem of Ioana Mihaila is negatively answered on the invertibility of composition operators on Riemann surfaces, and it is proved that the composition operator Cp is Predholm if and only if it is invertible if and only if p is invertible for some special cases. In addition, the Toeplitz operators on ∧1 2, a(M) for Riemann surface M are defined and some properties of these operators are discussed.