Chalcone is a plant metabolite widely found in fruits,vegetables,spices and tea,and has anti-tumor,anti-inflammation,immunomodulation,antibacterial and anti-oxidation activities,as well as many other pharmacological a...Chalcone is a plant metabolite widely found in fruits,vegetables,spices and tea,and has anti-tumor,anti-inflammation,immunomodulation,antibacterial and anti-oxidation activities,as well as many other pharmacological and biological effects.Our team has shown that its analogs have antioxidant activity,and oxidative stress is a pathological hallmark of retinal ischemia/reperfusion injury that can lead to retinal damage and visual loss.This investigation aims to identify a chalcone that protects retinal ganglion cells in vitro from the effects of oxidative stress and examine its mechanism.Rat retinal ganglion cell-5 cells were pretreated with chalcones and then exposed to tert-butyl hydroperoxide that causes oxidative damage.Controls received dimethyl sulfoxide only or tert-butyl hydroperoxide in dimethyl sulfoxide.Only(E)-3,4-dihydroxy-2′-methylether ketone(L2 H17),of the five chalcone analogs,markedly increased the survival rate of oxidatively injured RGC-5 cells.Thus,subsequent experiments only analyzed the results of the L2 H17 intervention.Cell viability and apoptosis were measured.Intracellular superoxide dismutase and reactive oxygen species levels were used to assess induced oxidative stress.The mechanism of action by L2 H17 was explored by measuring the ER stress/UPR pathway and the expression and localization of Nrf2.All results demonstrated that L2 H17 could reduce the apoptosis of oxidatively injured cells,inhibit caspase-3 activity,increase Bcl-2 expression,decrease Bad expression,increase the activity of superoxide dismutase,inhibit the production of reactive oxygen species,increase Nrf2 immunoreactivity,and reduce the activating transcription factor 4,phospho-eukaryotic initiation factor 2 and CHOP expression.L2 H17 protects retinal ganglion cells induced by oxidative stress by regulating Nrf2,which indicates that it has the potential to become a drug for retinal ischemia/reperfusion.展开更多
Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomy...Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs–NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.展开更多
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms’homeostasis and function.This physiological process is regulated by two enzyme famili...Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms’homeostasis and function.This physiological process is regulated by two enzyme families,protein tyrosine kinases(PTKs)and protein tyrosine phosphatases(PTPs).As an important regulator of protein function,PTPs are indispensable for maintaining cell intrinsic physiology in different systems,as well as liver physiological and pathological processes.Dysregulation of PTPs has been implicated in multiple liver-related diseases,including chronic liver diseases(CLDs),hepatocellular carcinoma(HCC),and liver injury,and several PTPs are being studied as drug therapeutic targets.Therefore,given the regulatory role of PTPs in diverse liver diseases,a collated review of their function and mechanism is necessary.Moreover,based on the current research status of targeted therapy,we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases.As an emerging breakthrough direction in the treatment of liver diseases,this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment.Overall,this review aims to support the development of novel PTP-based treatment pathways for liver diseases.展开更多
The NLRP3 inflammasome’s core and most specific protein,NLRP3,has a variety of functions in inflammation-driven diseases.Costunolide(COS)is the major active ingredient of the traditional Chinese medicinal herb Saussu...The NLRP3 inflammasome’s core and most specific protein,NLRP3,has a variety of functions in inflammation-driven diseases.Costunolide(COS)is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity,but the principal mechanism and molecular target of COS remain unclear.Here,we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3,altering the ATPase activity and assembly of NLRP3 inflammasome.We declare COS’s great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation.We also reveal that theα-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation.Taken together,NLRP3 is identified as a direct target of COS for its anti-inflammasome activity.COS,especially theα-methylene-γ-butyrolactone motif in COS structure,might be used to design and produce novel NLRP3 inhibitors as a lead compound.展开更多
As a classically known mitogen,fibroblast growth factor 1(FGF1)has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection.Here,we show that serum levels of FGF1 were dec...As a classically known mitogen,fibroblast growth factor 1(FGF1)has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection.Here,we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy(DCM)patients,indicating that FGF1 is a potential therapeutic target for DCM.We found that treatment with a FGF1 variant(FGF1^(△HBS))with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function.RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1AHBS treatment.Both in vivo and in vitro studies indicate that FGF1^(△HBS) exerted these beneficial effects by markedly reducing mitochondrial fragmentation,reactive oxygen species(ROS)generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5;AMP-activated protein kinase(AMPK)/Nur77-dependent manner,all of which were not observed in the AMPK null mice.The favorable metabolic activity and reduced proliferative properties of FGF1^(△HBS) testify to its promising potential for use in the treatment of DCM and other metabolic disorders.展开更多
基金supported by the National Natural Science Foundation of China,No.81473295(to ZMS),81373312(to XZ)and 81371028(to WCW)
文摘Chalcone is a plant metabolite widely found in fruits,vegetables,spices and tea,and has anti-tumor,anti-inflammation,immunomodulation,antibacterial and anti-oxidation activities,as well as many other pharmacological and biological effects.Our team has shown that its analogs have antioxidant activity,and oxidative stress is a pathological hallmark of retinal ischemia/reperfusion injury that can lead to retinal damage and visual loss.This investigation aims to identify a chalcone that protects retinal ganglion cells in vitro from the effects of oxidative stress and examine its mechanism.Rat retinal ganglion cell-5 cells were pretreated with chalcones and then exposed to tert-butyl hydroperoxide that causes oxidative damage.Controls received dimethyl sulfoxide only or tert-butyl hydroperoxide in dimethyl sulfoxide.Only(E)-3,4-dihydroxy-2′-methylether ketone(L2 H17),of the five chalcone analogs,markedly increased the survival rate of oxidatively injured RGC-5 cells.Thus,subsequent experiments only analyzed the results of the L2 H17 intervention.Cell viability and apoptosis were measured.Intracellular superoxide dismutase and reactive oxygen species levels were used to assess induced oxidative stress.The mechanism of action by L2 H17 was explored by measuring the ER stress/UPR pathway and the expression and localization of Nrf2.All results demonstrated that L2 H17 could reduce the apoptosis of oxidatively injured cells,inhibit caspase-3 activity,increase Bcl-2 expression,decrease Bad expression,increase the activity of superoxide dismutase,inhibit the production of reactive oxygen species,increase Nrf2 immunoreactivity,and reduce the activating transcription factor 4,phospho-eukaryotic initiation factor 2 and CHOP expression.L2 H17 protects retinal ganglion cells induced by oxidative stress by regulating Nrf2,which indicates that it has the potential to become a drug for retinal ischemia/reperfusion.
基金This study was supported by the National Key Research Project(2017YFA0506000 to Guang Liang,China)National Natural Science Foundation of China(81930108 to Guang Liang and 82000793 to Wu Luo,and 82270364 to Xiong Chen).
文摘Protein tyrosine kinases (RTKs) modulate a wide range of pathophysiological events in several non-malignant disorders, including diabetic complications. To find new targets driving the development of diabetic cardiomyopathy (DCM), we profiled an RTKs phosphorylation array in diabetic mouse hearts and identified increased phosphorylated fibroblast growth factor receptor 1 (p-FGFR1) levels in cardiomyocytes, indicating that FGFR1 may contribute to the pathogenesis of DCM. Using primary cardiomyocytes and H9C2 cell lines, we discovered that high-concentration glucose (HG) transactivates FGFR1 kinase domain through toll-like receptor 4 (TLR4) and c-Src, independent of FGF ligands. Knocking down the levels of either TLR4 or c-Src prevents HG-activated FGFR1 in cardiomyocytes. RNA-sequencing analysis indicates that the elevated FGFR1 activity induces pro-inflammatory responses via MAPKs–NFκB signaling pathway in HG-challenged cardiomyocytes, which further results in fibrosis and hypertrophy. We then generated cardiomyocyte-specific FGFR1 knockout mice and showed that a lack of FGFR1 in cardiomyocytes prevents diabetes-induced cardiac inflammation and preserves cardiac function in mice. Pharmacological inhibition of FGFR1 by a selective inhibitor, AZD4547, also prevents cardiac inflammation, fibrosis, and dysfunction in both type 1 and type 2 diabetic mice. These studies have identified FGFR1 as a new player in driving DCM and support further testing of FGFR1 inhibitors for possible cardioprotective benefits.
基金supported by National Natural Science Foundation of China(81930108 to Guang Liang)Zhejiang Provincial Key Scientific Project(2021C03041 to Guang Liang,China).
文摘Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms’homeostasis and function.This physiological process is regulated by two enzyme families,protein tyrosine kinases(PTKs)and protein tyrosine phosphatases(PTPs).As an important regulator of protein function,PTPs are indispensable for maintaining cell intrinsic physiology in different systems,as well as liver physiological and pathological processes.Dysregulation of PTPs has been implicated in multiple liver-related diseases,including chronic liver diseases(CLDs),hepatocellular carcinoma(HCC),and liver injury,and several PTPs are being studied as drug therapeutic targets.Therefore,given the regulatory role of PTPs in diverse liver diseases,a collated review of their function and mechanism is necessary.Moreover,based on the current research status of targeted therapy,we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases.As an emerging breakthrough direction in the treatment of liver diseases,this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment.Overall,this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
基金supported by the National Natural Science Foundation of China(81930108 to Guang Liang,82000793 to Wu Luo,and 82170373 to Yi Wang)Natural Science Foundation of Zhejiang Province(LY22H070004 to Wu Luo,China)+1 种基金Zhejiang Provincial Key Scientific Project(2021C03041 to Guang Liang,China)Wenzhou Scientific Project in China(Y20210213 to Wu Luo)。
文摘The NLRP3 inflammasome’s core and most specific protein,NLRP3,has a variety of functions in inflammation-driven diseases.Costunolide(COS)is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity,but the principal mechanism and molecular target of COS remain unclear.Here,we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3,altering the ATPase activity and assembly of NLRP3 inflammasome.We declare COS’s great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation.We also reveal that theα-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation.Taken together,NLRP3 is identified as a direct target of COS for its anti-inflammasome activity.COS,especially theα-methylene-γ-butyrolactone motif in COS structure,might be used to design and produce novel NLRP3 inhibitors as a lead compound.
基金This work was supported by Grants from National Key R&D Program of China(2017YFA0506000)(to X.L.and Z.H.)Natural Science Foundation of China(81874323,92057122 and 81903532 to Z.H.and D.W.)+1 种基金CAMS Innovation Fund for Medical Sciences(2019-12M-5-028 to X.L)Zhejiang Provincial Natural Science Foundation(LY18H070002 to Y.W).
文摘As a classically known mitogen,fibroblast growth factor 1(FGF1)has been found to exert other pleiotropic functions such as metabolic regulation and myocardial protection.Here,we show that serum levels of FGF1 were decreased and positively correlated with fraction shortening in diabetic cardiomyopathy(DCM)patients,indicating that FGF1 is a potential therapeutic target for DCM.We found that treatment with a FGF1 variant(FGF1^(△HBS))with reduced proliferative potency prevented diabetes-induced cardiac injury and remodeling and restored cardiac function.RNA-Seq results obtained from the cardiac tissues of db/db mice showed significant increase in the expression levels of anti-oxidative genes and decrease of Nur77 by FGF1AHBS treatment.Both in vivo and in vitro studies indicate that FGF1^(△HBS) exerted these beneficial effects by markedly reducing mitochondrial fragmentation,reactive oxygen species(ROS)generation and cytochrome c leakage and enhancing mitochondrial respiration rate and β-oxidation in a 5;AMP-activated protein kinase(AMPK)/Nur77-dependent manner,all of which were not observed in the AMPK null mice.The favorable metabolic activity and reduced proliferative properties of FGF1^(△HBS) testify to its promising potential for use in the treatment of DCM and other metabolic disorders.