期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
进口导叶对斜流式叶轮级性能调节的数值研究
1
作者 于家懿 张勇 +3 位作者 李廷宾 闻苏平 席光 祁志刚 《风机技术》 2024年第2期8-16,共9页
针对两种不同翼型的进口导叶,数值研究了导叶在不同开度下对超大流量系数斜流级内部气体流动的影响和调节特性,并预测了进口导叶与斜流叶轮耦合在不同导叶开度下的性能曲线。结果表明,进口导叶能有效扩大调节范围,使斜流压缩机能在更宽... 针对两种不同翼型的进口导叶,数值研究了导叶在不同开度下对超大流量系数斜流级内部气体流动的影响和调节特性,并预测了进口导叶与斜流叶轮耦合在不同导叶开度下的性能曲线。结果表明,进口导叶能有效扩大调节范围,使斜流压缩机能在更宽的工况范围内运行。导叶开度和翼型对斜流叶轮的气动性能产生影响,开度增大导致气体流动的不均匀性变大,而当开度增大到一定程度时,进口导叶的调节能力变差,对斜流叶轮气动性能产生负面影响。 展开更多
关键词 可调进口导叶 数值模拟 斜流级 数值研究 斜流叶轮
下载PDF
Numerical Study of Co-flow Jet Control on Corner Separation in Compressor Cascade
2
作者 Rui-ling Xu Tong-xi Li +1 位作者 Zhi-heng Wang guang xi 《风机技术》 2024年第5期25-33,共9页
The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance an... The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance. 展开更多
关键词 Compressor Cascade Co-flow Jet Control Corner Separation Loss Analysis Vortex Structure Analysi
下载PDF
超临界CO_2离心压缩机性能预测及损失模型研究 被引量:8
3
作者 崔新贵 席光 王志恒 《风机技术》 2018年第5期26-33,共8页
作为超临界CO_2布雷顿循环的核心部件之一的离心压缩机,由于CO_2物性的特殊性及相关实验数据的缺乏,其热力设计和非设计工况性能分析仍然是目前的研究热点。首先,本文针对设计分析过程中超临界CO_2物性变化剧烈的问题,对两区域模型进行... 作为超临界CO_2布雷顿循环的核心部件之一的离心压缩机,由于CO_2物性的特殊性及相关实验数据的缺乏,其热力设计和非设计工况性能分析仍然是目前的研究热点。首先,本文针对设计分析过程中超临界CO_2物性变化剧烈的问题,对两区域模型进行改进并予以验证;其次基于两区域模型对SANDIA实验超临界CO_2压缩机进行了性能预测并与单区模型预测结果对比,发现基于两区域模型的性能预测能够很好吻合实验结果;最后针对各损失模型在非设计工况下的变化进行了研究和分析。 展开更多
关键词 超临界CO2 离心压缩机 两区模型 性能预测 损失模型
下载PDF
The prediction of external flow field and hydrodynamic force with limited data using deep neural network
4
作者 Tong-sheng Wang guang xi +1 位作者 Zhong-guo Sun Zhu Huang 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第3期549-570,共22页
Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless fr... Predicting the external flow field with limited data or limited measurements has attracted long-time interests of researchers in many industrial applications.Physics informed neural network(PINN)provides a seamless framework for combining the measured data with the deep neural network,making the neural network capable of executing certain physical constraints.Unlike the data-driven model to learn the end-to-end mapping between the sensor data and high-dimensional flow field,PINN need no prior high-dimensional field as the training dataset and can construct the mapping from sensor data to high dimensional flow field directly.However,the extrapolation of the flow field in the temporal direction is limited due to the lack of training data.Therefore,we apply the long short-term memory(LSTM)network and physics-informed neural network(PINN)to predict the flow field and hydrodynamic force in the future temporal domain with limited data measured in the spatial domain.The physical constraints(conservation laws of fluid flow,e.g.,Navier-Stokes equations)are embedded into the loss function to enforce the trained neural network to capture some latent physical relation between the output fluid parameters and input tempo-spatial parameters.The sparsely measured points in this work are obtained from computational fluid dynamics(CFD)solver based on the local radial basis function(RBF)method.Different numbers of spatial measured points(4–35)downstream the cylinder are trained with/without the prior knowledge of Reynolds number to validate the availability and accuracy of the proposed approach.More practical applications of flow field prediction can compute the drag and lift force along with the cylinder,while different geometry shapes are taken into account.By comparing the flow field reconstruction and force prediction with CFD results,the proposed approach produces a comparable level of accuracy while significantly fewer data in the spatial domain is needed.The numerical results demonstrate that the proposed approach with a specific deep neural network configuration is of great potential for emerging cases where the measured data are often limited. 展开更多
关键词 Flow field prediction hydrodynamic force prediction long short-term memory physics informed neural network limited data local radial basis function method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部