In this study,we present a new method for the indirect integration of beam charges in external beam proton-induced X-ray emission and proton-induced c-ray emission(PIXE–PIGE) analysis.We recorded proton spectra backs...In this study,we present a new method for the indirect integration of beam charges in external beam proton-induced X-ray emission and proton-induced c-ray emission(PIXE–PIGE) analysis.We recorded proton spectra backscattered by a Kapton film extraction window in different sample situations and under different beam currents.We also simulated backscattering spectra using the simulation of backscattering spectra program(SIMNRA).We determined that in a specific geometrical arrangement,different sample situations did not significantly affect factor C_Q(the ratio between integral backscattering proton counts and integral beam charges).We also studied the reproducibility and beam current dependence of factor C_Q.The statistic factor of C_Q was28.95 ± 0.6 kilo counts/l C,with a relative standard deviation of 2.0 %.Significantly,in external beam PIXE–PIGE analysis,we were able to calculate beam charge integration from the integral backscattering proton counts in an energy region.展开更多
It is of particular interest to investigate nuclear fusion reactions generated by high-intensity lasers in plasma environments that are similar to real astrophysical conditions.We have experimentally investigated2H(d,...It is of particular interest to investigate nuclear fusion reactions generated by high-intensity lasers in plasma environments that are similar to real astrophysical conditions.We have experimentally investigated2H(d,p)3H,one of the most crucial reactions in big bang nucleosynthesis models,at the Shenguang-Ⅱlaser facility.In this work,we present a new calibration of CR-39 solidstate track detectors,which are widely employed as the main diagnostics in this type of fusion reaction experiment.We measure the dependence of the track diameter on the proton energy.It is found that the track diameters of protons with different energies are likely to be identical.We propose that in this case,the energy of the reaction products can be obtained by considering both the diameters and gray levels of these tracks.The present results would be very helpful for analyzing the2 H(d,p)3H reaction products recorded with the same batch of CR-39 solid-state track detectors.展开更多
To understand the evolution of defects in SiC during irradiation and the influence of temperature,in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence(IBIL)meas...To understand the evolution of defects in SiC during irradiation and the influence of temperature,in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence(IBIL)measurement under2 MeV H^+ at 100 K,150 K,200 K,250 K,and 300 K.A wide band(400-1000 nm)was found in the spectra at all temperatures,and the intensity of the IBIL spectra was highest at 150 K among the five temperatures.A small peak from 400 nm to 500 nm was only observed at 100 K,related with the D1 defect as a donor-acceptor pair(D-A)recombination.For further understanding the luminescent centers and their evolution,the orange band(1.79 eV)and the green band(2.14 eV)in the energy spectrum were analyzed by Gaussian decomposition,maybe due to the donor-deep defect/conduction band-deep defect transitions and Ti related bound excition,respectively.Finally,a single exponential fit showed that when the temperature exceeded 150 K,the two luminescence centers’resistance to radiation was reduced.展开更多
Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy ...Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young’s modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1 (60.0% SiO2, 15.0% B2O3, and 25.0% Na2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively. The hardness and Young’s modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young’s modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young’s modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young’s modulus were apparent at approximately 1.2 × 10^20 keV/cm^3 and 1.8 × 10^20 keV/cm^3, respectively. The dose dependency of the hardness and Young’s modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 10^22 keV/cm^3 in this work. Therefore, the evolution of hardness and Young’s modulus could have been primarily induced by nuclear energy deposition.展开更多
We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A...We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.展开更多
基金supported by the Beijing Natural Science Funds(No.1142006)
文摘In this study,we present a new method for the indirect integration of beam charges in external beam proton-induced X-ray emission and proton-induced c-ray emission(PIXE–PIGE) analysis.We recorded proton spectra backscattered by a Kapton film extraction window in different sample situations and under different beam currents.We also simulated backscattering spectra using the simulation of backscattering spectra program(SIMNRA).We determined that in a specific geometrical arrangement,different sample situations did not significantly affect factor C_Q(the ratio between integral backscattering proton counts and integral beam charges).We also studied the reproducibility and beam current dependence of factor C_Q.The statistic factor of C_Q was28.95 ± 0.6 kilo counts/l C,with a relative standard deviation of 2.0 %.Significantly,in external beam PIXE–PIGE analysis,we were able to calculate beam charge integration from the integral backscattering proton counts in an energy region.
基金This work was supported by the National Key Research and Development Project(No.2016YFA0400502)the National Natural Science Foundation of China(No.11775312).
文摘It is of particular interest to investigate nuclear fusion reactions generated by high-intensity lasers in plasma environments that are similar to real astrophysical conditions.We have experimentally investigated2H(d,p)3H,one of the most crucial reactions in big bang nucleosynthesis models,at the Shenguang-Ⅱlaser facility.In this work,we present a new calibration of CR-39 solidstate track detectors,which are widely employed as the main diagnostics in this type of fusion reaction experiment.We measure the dependence of the track diameter on the proton energy.It is found that the track diameters of protons with different energies are likely to be identical.We propose that in this case,the energy of the reaction products can be obtained by considering both the diameters and gray levels of these tracks.The present results would be very helpful for analyzing the2 H(d,p)3H reaction products recorded with the same batch of CR-39 solid-state track detectors.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11905010)the Fundamental Research Funds for the Central Universities,China(Grant No.2018NTST04)+1 种基金the China Postdoctoral Science Foundation(Grant No.2019M650526)Guangdong Province Key Area R&D Program,China(Grant No.2019B090909002)。
文摘To understand the evolution of defects in SiC during irradiation and the influence of temperature,in situ luminescence measurements of 6H-SiC crystal samples were carried out by ion beam induced luminescence(IBIL)measurement under2 MeV H^+ at 100 K,150 K,200 K,250 K,and 300 K.A wide band(400-1000 nm)was found in the spectra at all temperatures,and the intensity of the IBIL spectra was highest at 150 K among the five temperatures.A small peak from 400 nm to 500 nm was only observed at 100 K,related with the D1 defect as a donor-acceptor pair(D-A)recombination.For further understanding the luminescent centers and their evolution,the orange band(1.79 eV)and the green band(2.14 eV)in the energy spectrum were analyzed by Gaussian decomposition,maybe due to the donor-deep defect/conduction band-deep defect transitions and Ti related bound excition,respectively.Finally,a single exponential fit showed that when the temperature exceeded 150 K,the two luminescence centers’resistance to radiation was reduced.
基金supported by the National Natural Science Foundations of China(Nos.11505085 and 11505086)the Fundamental Research Funds for the Central Universities(No.lzujbky-2018-72)DSTI Foundation of Gansu(No.2018ZX-07)
文摘Sodium borosilicate glasses are candidate materials for high-level radioactive waste vitrification;therefore, understanding the irradiation effects in model borosilicate glass is crucial. Effects of electronic energy deposition and nuclear energy deposition induced by the impact of heavy ions on the hardness and Young’s modulus of sodium borosilicate glass were investigated. The work concentrates on sodium borosilicate glasses, henceforth termed NBS1 (60.0% SiO2, 15.0% B2O3, and 25.0% Na2O in mol%). The NBS1 glasses were irradiated by P, Kr, and Xe ions with 0.3 MeV, 4 MeV, and 5 MeV, respectively. The hardness and Young’s modulus of ion-irradiated NBS1 glasses were measured by nanoindentation tests. The relationships between the evolution of the hardness, the change in the Young’s modulus of the NBS1 glasses, and the energy deposition were investigated. With the increase in the nuclear energy deposition, both the hardness and Young’s modulus of NBS1 glasses dropped exponentially and then saturated. Regardless of the ion species, the nuclear energy depositions required for the saturation of hardness and Young’s modulus were apparent at approximately 1.2 × 10^20 keV/cm^3 and 1.8 × 10^20 keV/cm^3, respectively. The dose dependency of the hardness and Young’s modulus of NBS1 glasses was consistent with previous studies by Peuget et al. Moreover, the electronic energy loss is less than 4 keV/nm, and the electronic energy deposition is less than 3.0 × 10^22 keV/cm^3 in this work. Therefore, the evolution of hardness and Young’s modulus could have been primarily induced by nuclear energy deposition.
基金Supported by the National Key Research and Development Program of China(2017YFA0402201,2022YFA1604701,2022YFA1605000)the National Natural Science Foundation of China(12322511,12175112,12005111,11725522)。
文摘We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.