期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Root exudate chemistry affects soil carbon mobilization via microbial community reassembly 被引量:4
1
作者 Tao Wen guang-hui yu +7 位作者 Wen-Dan Hong Jun yuan Guo-Qing Niu Peng-Hao Xie Fu-Sheng Sun Lao-Dong Guo Yakov Kuzyakov Qi-Rong Shen 《Fundamental Research》 CAS 2022年第5期697-707,共11页
Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeoc... Plant roots are one of the major mediators that allocate carbon captured from the atmosphere to soils as rhizodeposits,including root exudates.Although rhizodeposition regulates both microbial activity and the biogeochemical cycling of nutrients,the effects of particular exudate species on soil carbon fluxes and key rhizosphere microorganisms remain unclear.By combining high-throughput sequencing,q-PCR,and NanoSIMS analyses,we characterized the bacterial community structure,quantified total bacteria depending on root exudate chemistry,and analyzed the consequences on the mobility of mineral-protected carbon.Using well-controlled incubation experiments,we showed that the three most abundant groups of root exudates(amino acids,carboxylic acids,and sugars)have contrasting effects on the release of dissolved organic carbon(DOC)and bioavailable Fe in an Ultisol through the disruption of organo-mineral associations and the alteration of bacterial communities,thus priming organic matter decomposition in the rhizosphere.High resolution(down to 50 nm)NanoSIMS images of mineral particles indicated that iron and silicon colocalized significantly more organic carbon following amino acid inputs than treatments without exudates or with carboxylic acids.The application of sugar strongly reduced microbial diversity without impacting soil carbon mobilization.Carboxylic acids increased the prevalence of Actinobacteria and facilitated carbon mobilization,whereas amino acid addition increased the abundances of Proteobacteria that prevented DOC release.In summary,root exudate functions are defined by their chemical composition that regulates bacterial community composition and,consequently,the biogeochemical cycling of carbon in the rhizosphere. 展开更多
关键词 Microbial community assembly NanoSIMS imaging Priming effects Root exudate chemistry Soil organic carbon Rhizosphere processes
原文传递
Nanozyme-mediated elemental biogeochemical cycling and environmental effects 被引量:2
2
作者 Zhi-Lai CHI guang-hui yu 《Science China Earth Sciences》 SCIE EI CSCD 2021年第7期1015-1025,共11页
In Earth systems,thousands of terragrams(Tg)(1 Tg=10^(12) g)of mineral nanoparticles move around annually.Some mineral nanoparticles have exhibited unexpected intrinsic enzyme-like characteristics(so called“mineral n... In Earth systems,thousands of terragrams(Tg)(1 Tg=10^(12) g)of mineral nanoparticles move around annually.Some mineral nanoparticles have exhibited unexpected intrinsic enzyme-like characteristics(so called“mineral nanozymes”),and are ubiquitously distributed in natural ecosystems such as the atmosphere,oceans,waters,and soils.Compared with natural enzymes,these mineral nanozymes have several advantages such as tunable catalytic efficiency and robustness to harsh conditions,e.g.,heat,acid,and alkaline conditions.As mineral nanozymes are new products of multidisciplinary cross-cutting,they have been widely applied in various fields.This review,for the first time,systematically introduces the species and properties of mineral nanozymes in Earth systems,discusses the critical roles played by nanozymes in environmental biogeochemical cycles,compiles the interfacial processes and mechanisms of mineral nanozymes,and provides an overview of the future prospects of mineral nanozymes. 展开更多
关键词 Nanozymes PEROXIDASE Nanominerals Reactive oxygen species Biogeochemical cycles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部