BACKGROUND:Pulmonary fibrosis(PF)is one of the main causes of death in patients with paraquat(PQ)poisoning.This study aimed to evaluate the relationship between mitochondrial fi ssion and oxidative stress in PQ-induce...BACKGROUND:Pulmonary fibrosis(PF)is one of the main causes of death in patients with paraquat(PQ)poisoning.This study aimed to evaluate the relationship between mitochondrial fi ssion and oxidative stress in PQ-induced epithelial-mesenchymal transition(EMT)and PF.METHODS:C57BL/6 mice and MLE-12 cells were exposed to PQ to construct a PF model in vivo and in vitro.Histological changes in the lungs were examined by hematoxylin and eosin(H&E)staining.Mitochondrial morphology was detected by MitoTracker®Deep Red FM or transmission electron microscopy(TEM).Western blotting and immunofluorescence were used to determine the expression of protein.The migration ability of the cells was detected by the cell scratch test.Mitochondrial DNA(mtDNA)levels were assessed by real-time polymerase chain reaction(PCR).Enzyme-linked immunosorbent assay(ELISA)was applied to detect cytokine levels.Superoxide dismutase(SOD)activity and the levels of glutathione(GSH)and malondialdehyde(MDA)were detected by chemichromatometry.RESULTS:PQ exposure caused EMT and PF in vivo and in vitro.PQ destroyed mitochondrial structure and enhanced the expression of dynamin-related protein 1(Drp1),which were accompanied by oxidative stress.Inhibiting mitochondrial fission using mitochondrial division inhibitor-1(Mdivi-1),a selective inhibitor of Drp1,attenuated PQ-induced EMT and oxidative damage.Treatment with N-acetyl-L-cysteine(NAC),an antioxidant,reduced Drp1 expression,attenuated mitochondrial structure damage and inhibited PQ-induced EMT and PF.Both Mdivi-1 and NAC treatment markedly suppressed mtDNA release,the expression of Toll-like receptor 9(TLR9)and phosphorylation(P)-NF-κB p65 as well as cytokines(interleukin 6[IL-6],interleukin-1β[IL-1β],and tumor necrosis factor-α[TNF-α])production.CONCLUSION:Mutual promotion of mitochondrial fission and oxidative stress contributes to EMT in PQ-induced PF,which is associated with the mtDNA/TLR9/NF-κB pathway.展开更多
Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have...Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.展开更多
Extreme meteorological and hydrological events may cause major disasters and heavy social and economic losses. Therefore, more and more studies have focused on extreme hydro-meteorological events in various climates a...Extreme meteorological and hydrological events may cause major disasters and heavy social and economic losses. Therefore, more and more studies have focused on extreme hydro-meteorological events in various climates and geographic regions. Based on nearly 50 years of observed records of the Poyang Lake Basin, the occurrence and changing trends of extreme streamflow indices, including the annual maximum flow, annual peak-over-threshold flows, and low flows, were analyzed for ten hydrological stations. The results indicate that most annual maximum flows occurred from April to July, highly attributed to the Southeast Asian summer monsoons, whereas the annual minimum flows were concentrated between January and February. As for the low flow indices (the annual minimum flow, annual minimum 7-d flow, and annual minimum 30-d flow), a significant increasing trend was detected in most parts of the Poyang Lake Basin. The trends illustrate the potential effects of climate change and human activities on the hydrological cycle over the Poyang Lake Basin.展开更多
Background:Mitofusin-2 (MFN2),a well-known mitochondrial fusion protein,has been shown to participate in innate immunity,but its role in mediating adaptive immunity remains poorly characterized.In this study,we exp...Background:Mitofusin-2 (MFN2),a well-known mitochondrial fusion protein,has been shown to participate in innate immunity,but its role in mediating adaptive immunity remains poorly characterized.In this study,we explored the potential role of MFN2 in mediating the immune function of T lymphocytes.Methods:We manipulated MFN2 gone expression in Jurkat cells via lentiviral transduction of MFN2 small interfering RNA (siRNA) or full-length MFN2.After transduction,the immune response and its underlying mechanism were determined in Jurkat cells.One-way analysis of variance and Student's t-test were performed to determine the statistical significance between the groups.Results:Overexpression of MFN2 enhanced the immune response of T lymphocytes by upregulating Ca2+ (359.280 ± 10.130 vs.266.940 ± 10.170,P =0.000),calcineurin (0.513 ± 0.014 vs.0.403 ± 0.020 nmol/L,P =0.024),and nuclear factor of activated T cells (NFATs) activation (1.040 ± 0.086 vs.0.700 ± 0.115,P =0.005),whereas depletion of MFN2 impaired the immune function ofT lymphocytes by downregulating Ca2+ (141.140 ± 14.670 vs.267.060 ± 9.230,P =0.000),calcineurin (0.054 ± 0.030 nmol/L vs.0.404 ± 0.063 nmol/L,P =0.000),and NFAT activation (0.500 ± 0.025 vs.0.720 ± 0.061,P =0.012).Furthermore,upregulated calcineurin partially reversed the negative effects ofMFN2 siRNA on T cell-mediated immunity evidenced by elevations in T cell proliferation (1.120 ± 0.048 vs.0.580 ± 0.078,P =0.040),interleukin-2 (IL-2) production (473.300 ± 24.100 vs.175.330 ± 12.900 pg/ml,P =0.000),and the interferon-γ/IL-4 ratio (3.080 ± 0.156 vs.0.953 ± 0.093,P =0.000).Meanwhile,calcineurin activity inhibitor depleted the positive effects of overexpressed MFN2 on T cells function.Conclusions:Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway.MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.展开更多
Sharp bending as one of the mechanical properties of double-stranded DNA(dsDNA) on the nanoscale is essential for biological functions and processes. Force sensors with optical readout have been designed to measure th...Sharp bending as one of the mechanical properties of double-stranded DNA(dsDNA) on the nanoscale is essential for biological functions and processes. Force sensors with optical readout have been designed to measure the forces inside short, strained loops composed of both dsDNA and single-stranded DNA(ssDNA). Recent FRET singlemolecule experiments were carried out based on the same force sensor design, but provided totally contrary results. In the current work, Monte Carlo simulations were performed under three conditions to clarify the discrepancy between the two experiments. The criterion that the work done by the force exerted on dsDNA by ssDNA should be larger than the nearest-neighbor(NN) stacking interaction energy is used to identify the generation of the fork at the junction of dsDNA and ssDNA. When the contour length of dsDNA in the sensor is larger than its critical length, the fork begins to generate at the junction of dsDNA and ssDNA, even with a kink in dsDNA. The forces inferred from simulations under three conditions are consistent with the ones inferred from experiments, including extra large force and can be grouped into two different states, namely, fork states and kink states. The phase diagrams constructed in the phase space of the NN stacking interaction energy and excited energy indicate that the transition between the fork state and kink state is difficult to identify in the phase space with an ultra small or large number of forks, but it can be detected in the phase space with a medium number of forks and kinks.展开更多
基金supported by the Wenzhou Municipal Science and Technology Bureau(Y2020092)partly by the Key Specialty of Traditional Chinese Medicine of Zhejiang Province in the 13th Five-Year Plan period(Emergency Department).
文摘BACKGROUND:Pulmonary fibrosis(PF)is one of the main causes of death in patients with paraquat(PQ)poisoning.This study aimed to evaluate the relationship between mitochondrial fi ssion and oxidative stress in PQ-induced epithelial-mesenchymal transition(EMT)and PF.METHODS:C57BL/6 mice and MLE-12 cells were exposed to PQ to construct a PF model in vivo and in vitro.Histological changes in the lungs were examined by hematoxylin and eosin(H&E)staining.Mitochondrial morphology was detected by MitoTracker®Deep Red FM or transmission electron microscopy(TEM).Western blotting and immunofluorescence were used to determine the expression of protein.The migration ability of the cells was detected by the cell scratch test.Mitochondrial DNA(mtDNA)levels were assessed by real-time polymerase chain reaction(PCR).Enzyme-linked immunosorbent assay(ELISA)was applied to detect cytokine levels.Superoxide dismutase(SOD)activity and the levels of glutathione(GSH)and malondialdehyde(MDA)were detected by chemichromatometry.RESULTS:PQ exposure caused EMT and PF in vivo and in vitro.PQ destroyed mitochondrial structure and enhanced the expression of dynamin-related protein 1(Drp1),which were accompanied by oxidative stress.Inhibiting mitochondrial fission using mitochondrial division inhibitor-1(Mdivi-1),a selective inhibitor of Drp1,attenuated PQ-induced EMT and oxidative damage.Treatment with N-acetyl-L-cysteine(NAC),an antioxidant,reduced Drp1 expression,attenuated mitochondrial structure damage and inhibited PQ-induced EMT and PF.Both Mdivi-1 and NAC treatment markedly suppressed mtDNA release,the expression of Toll-like receptor 9(TLR9)and phosphorylation(P)-NF-κB p65 as well as cytokines(interleukin 6[IL-6],interleukin-1β[IL-1β],and tumor necrosis factor-α[TNF-α])production.CONCLUSION:Mutual promotion of mitochondrial fission and oxidative stress contributes to EMT in PQ-induced PF,which is associated with the mtDNA/TLR9/NF-κB pathway.
基金supported by the Studies and Research in Sustainability Program (Deutscher Akademischer Austausch Dienst, DAAD)
文摘Digital elevation models (DEMs) are widely used to define the flow direction in distributed hydrological models for simulation of streamflow. In recent decades, numerous methods for flow direction determination have been applied successfully to mountainous regions. Nevertheless, some problems still exist when those methods are used for flat or gently sloped areas The present study reviews the conventional methods of determining flow direction for such landscapes and analyzes the problems of these methods. Two different methods of determining flow direction are discussed and were applied to the Xitiaoxi Catchment, located in the Taihu Basin in southern China, which has both mountainous and flat terrain. Both the agree method and the shortest path method use drainage networks derived from a remote sensing image to determine the correct location of the stream. The results indicate that the agree method provides a better fit with the DEM for the hilly region than the shortest path method. For the flat region where the flow has been diverted and rerouted by land managers, both methods require observation of the drainage network to determine the flow direction. In order to clarify the applicability of the two methods, both are employed in catchment hydrological models conceptually based on the Xinanjiang model and implemented with PCRaster. The simulation results show that both methods can be successfully applied in hydrological modeling. There are no evident differences in the modeled discharge when using the two methods at different spatial scales.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2007CB407203)the Chinese Postdoctoral Science Fund Project (Grant No. 20110490402)
文摘Extreme meteorological and hydrological events may cause major disasters and heavy social and economic losses. Therefore, more and more studies have focused on extreme hydro-meteorological events in various climates and geographic regions. Based on nearly 50 years of observed records of the Poyang Lake Basin, the occurrence and changing trends of extreme streamflow indices, including the annual maximum flow, annual peak-over-threshold flows, and low flows, were analyzed for ten hydrological stations. The results indicate that most annual maximum flows occurred from April to July, highly attributed to the Southeast Asian summer monsoons, whereas the annual minimum flows were concentrated between January and February. As for the low flow indices (the annual minimum flow, annual minimum 7-d flow, and annual minimum 30-d flow), a significant increasing trend was detected in most parts of the Poyang Lake Basin. The trends illustrate the potential effects of climate change and human activities on the hydrological cycle over the Poyang Lake Basin.
基金This study was supported by grants from the Natural Science Foundation of Zhejiang Province (No.LY13HI50006 and No. LY13H150004), the National Natural Science Foundation (No. 81571937 and No. 81772112), and the Key Construction Academic Subject (Medical Innovation) of Zhejiang Province (No. 11-CX26).
文摘Background:Mitofusin-2 (MFN2),a well-known mitochondrial fusion protein,has been shown to participate in innate immunity,but its role in mediating adaptive immunity remains poorly characterized.In this study,we explored the potential role of MFN2 in mediating the immune function of T lymphocytes.Methods:We manipulated MFN2 gone expression in Jurkat cells via lentiviral transduction of MFN2 small interfering RNA (siRNA) or full-length MFN2.After transduction,the immune response and its underlying mechanism were determined in Jurkat cells.One-way analysis of variance and Student's t-test were performed to determine the statistical significance between the groups.Results:Overexpression of MFN2 enhanced the immune response of T lymphocytes by upregulating Ca2+ (359.280 ± 10.130 vs.266.940 ± 10.170,P =0.000),calcineurin (0.513 ± 0.014 vs.0.403 ± 0.020 nmol/L,P =0.024),and nuclear factor of activated T cells (NFATs) activation (1.040 ± 0.086 vs.0.700 ± 0.115,P =0.005),whereas depletion of MFN2 impaired the immune function ofT lymphocytes by downregulating Ca2+ (141.140 ± 14.670 vs.267.060 ± 9.230,P =0.000),calcineurin (0.054 ± 0.030 nmol/L vs.0.404 ± 0.063 nmol/L,P =0.000),and NFAT activation (0.500 ± 0.025 vs.0.720 ± 0.061,P =0.012).Furthermore,upregulated calcineurin partially reversed the negative effects ofMFN2 siRNA on T cell-mediated immunity evidenced by elevations in T cell proliferation (1.120 ± 0.048 vs.0.580 ± 0.078,P =0.040),interleukin-2 (IL-2) production (473.300 ± 24.100 vs.175.330 ± 12.900 pg/ml,P =0.000),and the interferon-γ/IL-4 ratio (3.080 ± 0.156 vs.0.953 ± 0.093,P =0.000).Meanwhile,calcineurin activity inhibitor depleted the positive effects of overexpressed MFN2 on T cells function.Conclusions:Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway.MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11204045,11464004,and 11864006the State Scholarship Fund(20173015)Guizhou Scientific and Technological Program(20185781)
文摘Sharp bending as one of the mechanical properties of double-stranded DNA(dsDNA) on the nanoscale is essential for biological functions and processes. Force sensors with optical readout have been designed to measure the forces inside short, strained loops composed of both dsDNA and single-stranded DNA(ssDNA). Recent FRET singlemolecule experiments were carried out based on the same force sensor design, but provided totally contrary results. In the current work, Monte Carlo simulations were performed under three conditions to clarify the discrepancy between the two experiments. The criterion that the work done by the force exerted on dsDNA by ssDNA should be larger than the nearest-neighbor(NN) stacking interaction energy is used to identify the generation of the fork at the junction of dsDNA and ssDNA. When the contour length of dsDNA in the sensor is larger than its critical length, the fork begins to generate at the junction of dsDNA and ssDNA, even with a kink in dsDNA. The forces inferred from simulations under three conditions are consistent with the ones inferred from experiments, including extra large force and can be grouped into two different states, namely, fork states and kink states. The phase diagrams constructed in the phase space of the NN stacking interaction energy and excited energy indicate that the transition between the fork state and kink state is difficult to identify in the phase space with an ultra small or large number of forks, but it can be detected in the phase space with a medium number of forks and kinks.