Many structures and materials in nature and physiology have important "meso-scale" structures at the micron lengthscale whose tensile responses have proven difficult to characterize mechanically. Although techniques...Many structures and materials in nature and physiology have important "meso-scale" structures at the micron lengthscale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.展开更多
Epithelial monolayers act as a vital player in a variety of physiological activities,such as wound healing and embryonic development.The mechanical behavior of epithelial monolayers has been increasingly studied with ...Epithelial monolayers act as a vital player in a variety of physiological activities,such as wound healing and embryonic development.The mechanical behavior of epithelial monolayers has been increasingly studied with the recent rapid development of techniques.Under dynamic loadings,the creep response of epithelial monolayers shows a power-law dependence on the time with an exponent larger than that of a single cell.Under static loadings,the elastic modulus of epithelial monolayers is nearly two orders of magnitude higher than that of a single cell.To date,there is a lack of a mechanical model that can describe both the dynamic and static mechanical responses of epithelial monolayers.Here,based on the structural features of cells,we establish a multi-scale structural model of cell monolayers.It is found that the proposed model can naturally capture the dynamic and static mechanical properties of cell monolayers.Further,we explore the effects of the cytoskeleton and the membrane moduli on the dynamical power-law rheological responses and static stress-strain relations of a single cell and cell monolayers,respectively.Our work lays the foundation for subsequent studies of the mechanical behavior of more complex epithelial tissues.展开更多
We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By...We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By varying the particle concentration or the chain length and density of the grafted polymer, one can not only create various ordered morphologies (e.g., lamellar or hexagonally packed patterns) but also control the positions of nanoparticles either at the copolymer interfaces or in the center of one-block domains. The nanostructural transitions we here report are mainly attributed to the competition between entropy and enthalpy.展开更多
基金partially supported by the National Natural Science Foundation of China(Grants 11532009,11372243,and 11522219)the China Postdoctoral Science Foundation(Grant 2016M602810)This project was also supported by the Initiative Postdocs Supporting Program(Grant BX201600121)
文摘Many structures and materials in nature and physiology have important "meso-scale" structures at the micron lengthscale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072252 and 12122210)the Natural Science Basic Research Plan in Shanxi Province of China(Grant No.2019JC-02).
文摘Epithelial monolayers act as a vital player in a variety of physiological activities,such as wound healing and embryonic development.The mechanical behavior of epithelial monolayers has been increasingly studied with the recent rapid development of techniques.Under dynamic loadings,the creep response of epithelial monolayers shows a power-law dependence on the time with an exponent larger than that of a single cell.Under static loadings,the elastic modulus of epithelial monolayers is nearly two orders of magnitude higher than that of a single cell.To date,there is a lack of a mechanical model that can describe both the dynamic and static mechanical responses of epithelial monolayers.Here,based on the structural features of cells,we establish a multi-scale structural model of cell monolayers.It is found that the proposed model can naturally capture the dynamic and static mechanical properties of cell monolayers.Further,we explore the effects of the cytoskeleton and the membrane moduli on the dynamical power-law rheological responses and static stress-strain relations of a single cell and cell monolayers,respectively.Our work lays the foundation for subsequent studies of the mechanical behavior of more complex epithelial tissues.
基金Support from the National Natural Science Foundation of China(Nos.10972121,10732050,and 10772093)the Ministry of Education(SRFDP 20090002110047)and the 973 program of MOST(No.2010CB631005)are acknowledged.
文摘We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By varying the particle concentration or the chain length and density of the grafted polymer, one can not only create various ordered morphologies (e.g., lamellar or hexagonally packed patterns) but also control the positions of nanoparticles either at the copolymer interfaces or in the center of one-block domains. The nanostructural transitions we here report are mainly attributed to the competition between entropy and enthalpy.