期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Tailoring sintering-resistant thermal barrier coatings by considering critical healing width of two-dimensional interlamellar pores
1
作者 guang-rong li Tao liu +2 位作者 Xiao-Tao Luo Guan-Jun Yang Chang-Jiu li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第7期1317-1330,共14页
Large degradation in thermal insulation and strain tolerance is a main headache and a primary cause of the failure for plasma-sprayed thermal barrier coatings(TBCs)during service.One mechanism behind such degradation ... Large degradation in thermal insulation and strain tolerance is a main headache and a primary cause of the failure for plasma-sprayed thermal barrier coatings(TBCs)during service.One mechanism behind such degradation is the healing of interlamellar pores formed by multiple connections between edges of a pore,which significantly speeds up healing during thermal exposure.The objective of this study is to obtain sintering-resistant TBCs by tailoring the width of interlamellar pores to avoid multiple connections.Firstly,the mechanism responsible for the multiple connections was revealed.The splat surfaces before and after thermal treatments were characterized via an atomic force microscope(AFM).The roughening of the pore surface occurs during thermal exposure,along with the grain growth inside the splats.Consequently,the local surface height increases,which causes multiple connections and healing of the interlamellar pores.Secondly,critical widths of the interlamellar pores for avoiding the multiple connections during thermal exposure are established by correlating the extent of surface roughening with the growth of individual grains.The height increase of the splat surface and the growth of the grain size(D)were found to increase with the exposure temperature and duration.A relationship linking the height increase and the growth of the grain size induced by thermal exposure in plasma-sprayed ceramic splats was obtained.Finally,composite TBCs were prepared to form wide interlamellar pores in the coatings.Using this design,the increases in the thermal conductivity(λ)and the elastic modulus(E)can be prevented to a large extent.Thus,sintering-resistant TBCs that maintain high thermal insulation and strain tolerance,even afer long thermal exposure,can be created. 展开更多
关键词 thermal barrier coatings(TBCs) air plasma spraying(APS) multiple connections grain growth sintering-resistant structure
原文传递
Lightweight epoxy-based abradable seal coating with high bonding strength 被引量:3
2
作者 Yun-Qi Tong Qiu-Sheng Shi +3 位作者 Mei-Jun liu guang-rong li Chang-Jiu li Guan-Jun Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第10期129-137,共9页
To gain high efficiency and low fuel consumption, aluminum-based abradable seal coatings had been widely used in the compressor casing of aero engines or gas turbines owing to the low elastic modulus. However, the adh... To gain high efficiency and low fuel consumption, aluminum-based abradable seal coatings had been widely used in the compressor casing of aero engines or gas turbines owing to the low elastic modulus. However, the adhesive transfer phenomenon frequently occurs when the radial rubbing generates between titanium alloy blade tips and aluminum-based coating. It tends to increase scratch force and results in blades vibration and even engine jam. To eliminate this problem, a new lightweight epoxy-based abradable seal coating with high bonding strength was developed by an effective and porosity controllable mixing process that distributes spherical pores uniformly in the continuous matrix. A lightweight coating of 63% porosity with a hardness of 33.1(HR15 Y) can be reached when the content of hollow microspheres is 31 wt.%. The coating density is 0.5 g/cm3 and the bonding strength is as high as 18 MPa.The performance of the epoxy-based coating is comprehensively better than aluminum-based coatings in five essential indices. This study is expected to provide a new technical path for obtaining high-quality abradable seal coatings to guarantee the efficient and safe operation of compressors. 展开更多
关键词 Epoxy-based seal coating Porosity HR15Y LIGHTWEIGHT High bonding strength
原文传递
Improving WC-Co coating adhesive strength on rough substrate:Finite element modeling and experiment 被引量:1
3
作者 Adnan Tahir guang-rong li +4 位作者 Mei-Jun liu Guan-Jun Yang Cheng-Xin li Yu-Yue Wang Chang-Jiu li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第2期1-8,共8页
The adhesive strength in a coating-substrate system is of primary importance for the coating lifetime in service.However,the underlying mechanism is not fully understood due to the complex internal structure of compos... The adhesive strength in a coating-substrate system is of primary importance for the coating lifetime in service.However,the underlying mechanism is not fully understood due to the complex internal structure of composite coatings.In this study,the effect of substrate roughness on the adhesive strength of WCCo coatings was investigated by experiment and simulation.Results show that the adhesive strength is significantly affected by the roughness.In the case of the Ra<2μm,the adhesive strength is approximately 35–46 MPa.When the Ra is 4μm,the adhesive strength increases to nearly 60 MPa.A finite element model was developed to correlate the roughness with adhesive strength.It is found that the predicted values are well consistent with the experimental data.In addition,with the increase of the roughness,the residual stress would be changed from concentrated state to widespread state,which decreases the critical stress to result in crack propagation.That’s why a larger roughness can cause a higher adhesive strength.This study gives understanding on the mechanism of adhesive strength affected by roughness,which contributes to the parameter optimization with better performance. 展开更多
关键词 ADHESIVE strength ROUGHNESS LIFETIME Simulation XFEM RESIDUAL stress
原文传递
Comprehensive damage evaluation of localized spallation of thermal barrier coatings 被引量:8
4
作者 Wei-Wei ZHANG guang-rong li +1 位作者 Qiang ZHANG Guan-Jun YANGa 《Journal of Advanced Ceramics》 CSCD 2017年第3期230-239,共10页
原文传递
Progress in ceramic materials and structure design toward advanced thermal barrier coatings 被引量:11
5
作者 Zhi-Yuan WEI Guo-Hui MENG +30 位作者 lin CHEN guang-rong li Mei-Jun liU Wei-Xu ZHANG li-Na ZHAO Qiang ZHANG Xiao-Dong ZHANG Chun-Lei WAN Zhi-Xue QU lin CHEN Jing FENG ling liU Hui DONG Ze-Bin BAO Xiao-Feng ZHAO Xiao-Feng ZHANG Lei GUO liang WANG Bo CHENG Wei-Wei ZHANG Peng-Yun XU Guan-Jun YANG Hong-Neng CAI Hong CUI You WANG Fu-Xing YE Zhuang MA Wei PAN Min liU Ke-Song ZHOU Chang-Jiu li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第7期985-1068,共84页
Thermal barrier coatings(TBCs)can effectively protect the alloy substrate of hot components in aeroengines or land-based gas turbines by the thermal insulation and corrosion/erosion resistance of the ceramic top coat.... Thermal barrier coatings(TBCs)can effectively protect the alloy substrate of hot components in aeroengines or land-based gas turbines by the thermal insulation and corrosion/erosion resistance of the ceramic top coat.However,the continuous pursuit of a higher operating temperature leads to degradation,delamination,and premature failure of the top coat.Both new ceramic materials and new coating structures must be developed to meet the demand for future advanced TBC systems.In this paper,the latest progress of some new ceramic materials is first reviewed.Then,a comprehensive spalling mechanism of the ceramic top coat is summarized to understand the dependence of lifetime on various factors such as oxidation scale growth,ceramic sintering,erosion,and calcium–magnesium–aluminium–silicate(CMAS)molten salt corrosion.Finally,new structural design methods for high-performance TBCs are discussed from the perspectives of lamellar,columnar,and nanostructure inclusions.The latest developments of ceramic top coat will be presented in terms of material selection,structural design,and failure mechanism,and the comprehensive guidance will be provided for the development of next-generation advanced TBCs with higher temperature resistance,better thermal insulation,and longer lifetime. 展开更多
关键词 thermal barrier coatings(TBCs) ceramic material degradation and failure structure design long lifetime
原文传递
Plasma spray-physical vapor deposition toward advanced thermal barrier coatings:a review 被引量:6
6
作者 Mei-Jun liu Gao Zhang +5 位作者 Yan-Hong Lu Jia-Qi Han guang-rong li Cheng-Xin li Chang-Jiu li Guan-Jun Yang 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期479-497,共19页
Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap betw... Plasma spray–physical vapor deposition(PS–PVD)is a unique technology that enables highly tailorable functional films and coatings with various rare metal elements to be processed.This technology bridges the gap between conventional thermal spray and vapor deposition and provides a variety of coating microstructures composed of vapor,liquid,and solid deposition units.The PS–PVD technique serves a broad range of applications in the fields of thermal barrier coatings(TBCs),environmental barrier coatings(EBCs),oxygen permeable films,and electrode films.It also represents the development direction of high-performance TBC/EBC preparation technologies.With the PS–PVD technique,the composition of the deposition unit determines the microstructure of the coating and its performance.When coating materials are injected into a nozzle and transported into the plasma jet,the deposition unit generated by a coating material is affected by the plasma jet characteristics.However,there is no direct in situ measurement method of material transfer and deposition processes in the PS–PVD plasma jet,because of the extreme conditions of PS–PVD such as a low operating pressure of*100 Pa,temperatures of thousands of degrees,and a thin and high-velocity jet.Despite the difficulties,the transport and transformation behaviors of the deposition units were also researched by optical emission spectroscopy,observation of the coating microstructure and other methods.This paper reviews the progress of PS–PVD technologies considering the preparation of advanced thermal barrier coatings from the perspective of the transport and transformation behaviors of the deposition units.The development prospects of new high-performance TBCs using the PS–PVD technique are also discussed. 展开更多
关键词 Plasma spray–physical vapor deposition (PSPVD) Deposition unit Cross-domain behavior Deposition mechanism Thermal barrier coatings (TBCs)
原文传递
Bimodal TBCs with low thermal conductivity deposited by a powder-suspension co-spray process 被引量:6
7
作者 Wei-Wei Zhang guang-rong li +3 位作者 Qiang Zhang Guan-Jun Yang Guo-Wang Zhang Hong-Min Mu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1293-1304,共12页
Advanced thermal harrier coatings (TBCs) with better thermal barrier performance are required by both advanced gas turbine and air engine. In this work, novel bimodal TBCs with low thermal conductivity were deposite... Advanced thermal harrier coatings (TBCs) with better thermal barrier performance are required by both advanced gas turbine and air engine. In this work, novel bimodal TBCs with low thermal conductivity were deposited and characterized by a novel co-spray approach with both solid powder and suspension. Experimental and finite element analyses were used to optimize the process parameters to prepare the specific morphology nanostructure features. With a comprehensive understanding on the influence of spraying parameters on the morphology ofnano-particles, homogeneous nano-particle heaps with a large aspect ratio were introduced to conventional layered coatings by plasma co-spraying with suspension and solid powder. Co-sprayed bimodal microstructure composite coatings resulted from both wet suspension droplets and molten particle droplets exhibited low thermal conductivity. The thermal conductivity of the composite coating was 1/5 lower than that of the counterpart coatings by conventional plasma spraying with solid powder. This study sheds light to the structural tailoring towards the advanced TBCs with low thermal conductivity. 展开更多
关键词 Thermal barrier coatings Aspect ratioBimodal microstructure Thermal conductivity Co-spray process
原文传递
Discrimination of Repetitive Sequences Polymorphism in Secale cereale by Genomic In Situ Hybridization-Banding 被引量:1
8
作者 Jian-Ping Zhou Zu-Jun Yang +2 位作者 guang-rong li Cheng liu Zheng-Long Ren 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第4期452-456,共5页
Genomic in situ hybridization banding (GISH-banding), a technique slightly modified from conventional GISH, was used to probe the Chinese native rye (Secale cereale L.) DNA, and enabled us to visualize the individ... Genomic in situ hybridization banding (GISH-banding), a technique slightly modified from conventional GISH, was used to probe the Chinese native rye (Secale cereale L.) DNA, and enabled us to visualize the individual rye chromosomes and create a universal reference karyotype of the S. cereale chromosome 1R to 7R. The GISH-banding approach used in the present study was able to discriminate S. cereale chromosomes or segments in the wheat (Triticum aestivum L.) background, including the Triticale, wheat-rye addition and translocation lines. Moreover, the GISH-banding pattern of S. cereale subsp. Afghanicum chromosomes was consistent with that of Chinese native rye cv. Jingzhou rye; whereas the GISH-banding pattern of Secale vavilovii was different from that of S. cereale, indicating that GISH-banding can be used to study evolutionary polymorphism in species or subspecies of Secale. In addition, the production and application of GISH-banding to the study of adenine-thymine-riched heterochromaUn is discussed. 展开更多
关键词 adenine-thymine-riched heterochromatin genomic in situ hybridization-banding KARYOTYPE repetitive sequences Secale cereale.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部