A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetro...A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance.展开更多
Diamond-like carbon(DLC)and graphite-like carbon(GLC)coatings have good prospects for improving the surface properties of engine parts.However,further understanding is needed on the effect of working conditions on tri...Diamond-like carbon(DLC)and graphite-like carbon(GLC)coatings have good prospects for improving the surface properties of engine parts.However,further understanding is needed on the effect of working conditions on tribological behaviors.In this study,GLC and two types of DLC coatings were deposited on GCr15 substrate for investigation.The friction and wear properties of self-mated and steel-mated pairs were evaluated.Two temperatures(25 and 90℃),three lubrication conditions(base oil,molybdenum dithiocarbamate(MoDTC)-containing oil,MoDTC+zinc dialkyldithiophosphate(ZDDP)-containing oil),and high Hertz contact stress(2.41 GPa)were applied in the experiments.The results showed that high temperature promoted the effect of ZDDP on steel-mated pairs,but increased wear under base oil lubrication.The increased wear for steel-mated pairs lubricated by MoDTC-containing oil was due to abrasive wear probably caused by MoO_(3) andβ-FeMoO_(4).It was also found that in most cases,the tribological properties of self-mated pairs were better than those of steel-mated pairs.展开更多
基金This work was supported by Special Fund for Local Science and Technology Development from the Ministry of Science and Technology of China(2020ZYD053)Science and Technology Planning Project of Zigong(2019YYJC22)Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities(2020JXY05).
文摘A reliable,high-performance coating procedure was developed using PDMS to modify a duplex MAO/DLC coating on an AZ31B Mg alloy.First,the duplex MAO/DLC coating was fabricated via a combined MAO and unbalanced magnetron sputter process.Subsequently,a PDMS solution was used to modify the MAO/DLC coating via a conventional dip-coating method.The surface characteristics,bond strength,hardness,tribological behaviour,and corrosion resistance of the coated samples were evaluated via SEM,CA,Raman spectroscopy,friction and wear behaviour,polarisation curve,and NSS tests.The PDMS modification reduced the HIT of MAO/DLC coating from 15.96 to 8.34GPa;this is ascribed to the penetration of PDMS,which has good rheological properties to form a viscoelastic Si-based organic polymer layer on the MAO/DLC coating.However,the PDMS-modified MAO/DLC coating was denser,hydrophobic,and had higher bond strength compared with MAO-and MAO/DLC-coated samples.Moreover,the PDMS modification reduced the COF and wear rate of the duplex MAO/DLC coating.This indicates that the PDMS improved the tribological behaviour owing to the transferred Si oxide that originated from the Si-O network of the PDMS,as well as the low graphitisation of the DLC layer during sliding.Furthermore,the corrosion current density of the MAO/DLC-coated sample modified by PDMS for 10min decreased by two order of magnitude compared with that of the MAO/DLC-coated sample but by five orders of magnitude compared with that of the bare substrate.The NSS tests proved that the PDMS layer slowed the corrosion of the Mg alloy under long-term service,enhancing the corrosion protection efficiency.The results are attributed to the high bond strength and lubricant MAO/DLC layer,and the dual role of sealing and hydrophobicity of PDMS.Therefore,PDMS modification is promising for the fabrication of protective materials for Mg alloys that require corrosion and wear resistance.
基金This work was supported by the Beijing Municipal Natural Science Foundation(3182032)the National Natural Science Foundation of China(41772389)+1 种基金the Pre-Research Program in National 13th Five-Year Plan(61409230603)Joint Fund of Ministry of Education for Pre-research of Equipment for Young Personnel Project(6141A02033120).
文摘Diamond-like carbon(DLC)and graphite-like carbon(GLC)coatings have good prospects for improving the surface properties of engine parts.However,further understanding is needed on the effect of working conditions on tribological behaviors.In this study,GLC and two types of DLC coatings were deposited on GCr15 substrate for investigation.The friction and wear properties of self-mated and steel-mated pairs were evaluated.Two temperatures(25 and 90℃),three lubrication conditions(base oil,molybdenum dithiocarbamate(MoDTC)-containing oil,MoDTC+zinc dialkyldithiophosphate(ZDDP)-containing oil),and high Hertz contact stress(2.41 GPa)were applied in the experiments.The results showed that high temperature promoted the effect of ZDDP on steel-mated pairs,but increased wear under base oil lubrication.The increased wear for steel-mated pairs lubricated by MoDTC-containing oil was due to abrasive wear probably caused by MoO_(3) andβ-FeMoO_(4).It was also found that in most cases,the tribological properties of self-mated pairs were better than those of steel-mated pairs.