To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was an...To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.展开更多
基金The authors would like to acknowledge the financial support from National Key Research and Development Program of China(2018YFB1107801 and 2018YFB1107802)Science Fund for Creative Research Groups of NSFC(51621064)+1 种基金National Natural Science Foundation of China(51790172)Fundamental Research Funds for the Central University(DUT19LAB06).
文摘To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.