In this study,TiC/CM247LC nickel-based composite was successfully prepared by selective laser melting,then was heat treated at a solid solution temperature of 1260℃and different aging temperature of 840℃,870℃,900℃...In this study,TiC/CM247LC nickel-based composite was successfully prepared by selective laser melting,then was heat treated at a solid solution temperature of 1260℃and different aging temperature of 840℃,870℃,900℃and 930℃respectively.Effects of aging temperatures on the microstructures and mechanical properties were systematically studied.The results show that the microstructures of all the heat treated samples are composed ofγmatrix,carbides andγ′phase.Theγgrains remain a columnar shape after treatments,but the size ofγ′phase grows up gradually with the increasing aging temperature.The composite treated at an aging temperature of 870℃exhibits the best mechanical properties with the tensile strength of 1073 MPa,yield strength of 1004 MPa and elongation of 7.57%.The plastic deformation and strengthening mechanisms of heat treated composite were systematically investigated.展开更多
基金he financial supports provided by the Shandong Provincial Natural Science Foundation General Program under Grant No.ZR2023ME062.
文摘In this study,TiC/CM247LC nickel-based composite was successfully prepared by selective laser melting,then was heat treated at a solid solution temperature of 1260℃and different aging temperature of 840℃,870℃,900℃and 930℃respectively.Effects of aging temperatures on the microstructures and mechanical properties were systematically studied.The results show that the microstructures of all the heat treated samples are composed ofγmatrix,carbides andγ′phase.Theγgrains remain a columnar shape after treatments,but the size ofγ′phase grows up gradually with the increasing aging temperature.The composite treated at an aging temperature of 870℃exhibits the best mechanical properties with the tensile strength of 1073 MPa,yield strength of 1004 MPa and elongation of 7.57%.The plastic deformation and strengthening mechanisms of heat treated composite were systematically investigated.