Aims We aimed to evaluate the changes in water-use efficiency(WuE)in native tree species in forests of subtropical China,and determine how coexisting species would be responding to increases in atmospheric carbon diox...Aims We aimed to evaluate the changes in water-use efficiency(WuE)in native tree species in forests of subtropical China,and determine how coexisting species would be responding to increases in atmospheric carbon dioxide(CO_(2))concentrations and nitrogen(N)deposition.Methods We used model forest ecosystems in open-top chambers to study the effects of elevated CO_(2)(ca.700μmol mol−1)alone and together with N addition(NH4No3 applied at 100 kg N ha−1year−1)on WuE of four native tree species(Schima superba,Ormosia pin-nata,Castanopsis hystrix and Acmena acuminatissima)from 2006 to 2010.Important findingsour result indicated that all species increased their WuE when they were exposed to elevated CO_(2).although higher WuE was shown in faster-growing species(S.superba and O.pinnata)than that of slower-growing species(C.hystrix and Acmena acuminatissima),the increased extent of WuE induced by elevated CO_(2) was higher in the slower-growing species than that of the faster-growing species(P<0.01).the N treatment decreased WuE of S.superba,while the effects on other species were not significant.the interactions between elevated CO_(2) and N addition increased intrinsic WuE of S.superba significantly(P<0.001),however,it did not affect WuE of the other tree species significantly.We conclude that the responses of native tree species to elevated CO_(2) and N addition are different in subtropical China.the species-specific effects of elevated CO_(2) and N addition on WuE would have important implications on species composition in China’s subtropics in response to global change.展开更多
基金South China Botanical Garden-Shanghai Institute of Plant Physiology&Ecology Joint Fund,Science and Technology Innovation Project of Guangdong Province Forestry(Grant No.2012KJCX019-02)the National Natural Science Foundation of China(Grant No.31370530).
文摘Aims We aimed to evaluate the changes in water-use efficiency(WuE)in native tree species in forests of subtropical China,and determine how coexisting species would be responding to increases in atmospheric carbon dioxide(CO_(2))concentrations and nitrogen(N)deposition.Methods We used model forest ecosystems in open-top chambers to study the effects of elevated CO_(2)(ca.700μmol mol−1)alone and together with N addition(NH4No3 applied at 100 kg N ha−1year−1)on WuE of four native tree species(Schima superba,Ormosia pin-nata,Castanopsis hystrix and Acmena acuminatissima)from 2006 to 2010.Important findingsour result indicated that all species increased their WuE when they were exposed to elevated CO_(2).although higher WuE was shown in faster-growing species(S.superba and O.pinnata)than that of slower-growing species(C.hystrix and Acmena acuminatissima),the increased extent of WuE induced by elevated CO_(2) was higher in the slower-growing species than that of the faster-growing species(P<0.01).the N treatment decreased WuE of S.superba,while the effects on other species were not significant.the interactions between elevated CO_(2) and N addition increased intrinsic WuE of S.superba significantly(P<0.001),however,it did not affect WuE of the other tree species significantly.We conclude that the responses of native tree species to elevated CO_(2) and N addition are different in subtropical China.the species-specific effects of elevated CO_(2) and N addition on WuE would have important implications on species composition in China’s subtropics in response to global change.