期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Prediction of the joint impacts of sea level rise and land development on distribution patterns of mangrove communities
1
作者 Shanshan Liang Wenjia Hu +6 位作者 Peiqiang Wu Jianbu Wang Shangke Su guangcheng chen Jianguo Du Wenhua Liu Bin chen 《Forest Ecosystems》 SCIE CSCD 2023年第2期176-186,共11页
Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually base... Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually based only on the total extent of mangroves.Few studies have revealed how SLR and land development such as agriculture,aquaculture,and urbanization jointly affect different intertidal mangrove communities.This study proposed a novel framework combining SLAMM(Sea Level Affecting Marshes Model)and the CLUE-S(Conversion of Land Use and its Effect at Small regional extent)model to assess the potential impacts on upper and lower intertidal mangrove communities.Maoweihai in Guangxi,China,was selected as the study area and the potential impacts from the squeeze effect and mangrove expansion potential were evaluated.We established three scenarios combining SLR and land use patterns to predict mangrove coverage projections by 2070.The results showed that,under a single SLR driver,the upper intertidal mangroves would be more adaptive to rapid SLR than the lower intertidal mangroves.However,under the combined influence of the two drivers,the upper intertidal mangroves would experience larger squeeze effects than the lower intertidal mangroves,with up to 80.5%of suitable habitat lost.Moreover,the expansion potential of upper intertidal mangroves would be considerably more limited than that of lower intertidal mangroves.The length of the expandable habitat patch boundary of upper intertidal mangroves only reached 1.4–1.8 km,while that of the lower intertidal mangroves reached up to99.2–111.2 km.Further,we found that aquaculture ponds and cropland are the top two land development types that could occupy suitable habitat and restrict the mangrove expansion potential.Our results highlight that timely improvement of land use policies to create available landward accommodation space for mangrove migration is essential to maintain the coverage and diversity of mangrove communities under SLR.The proposed method can be a helpful tool for adaptive mangrove conservation and management under climate change. 展开更多
关键词 Coastal development Climate change Mangrove communities Mangrove adaption Land use Sea level rise
下载PDF
Potential effects of sea level rise on the soil-atmosphere green-house gas emissions in Kandelia obovata mangrove forests
2
作者 Jiahui chen Shichen Zeng +3 位作者 Min Gao guangcheng chen Heng Zhu Yong Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期25-32,共8页
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid... Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR. 展开更多
关键词 carbon dioxide METHANE nitrous oxide CO_(2)-equivalent fluxes sea level rise mangrove forest
下载PDF
Biomass accumulation and organic carbon stocks of Kandelia obovata mangrove vegetation under different simulated sea levels 被引量:1
3
作者 Jiahui chen Min Gao +2 位作者 guangcheng chen Heng Zhu Yong Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第8期78-86,共9页
Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks... Mangrove forests are vulnerably threatened by sea level rise(SLR).Vegetation organic carbon(OC)stocks are important for mangrove ecosystem carbon cycle.It is critical to understand how SLR affects vegetation OC stocks for evaluating mangrove blue carbon budget and global climate change.In this study,biomass accumulation and OC stocks of mangrove vegetation were compared among three 10 year-old Kandelia obovata(a common species in China)mangrove forests under three intertidal elevations through species-specific allometric equations.This study simulated mangrove forests with SLR values of 0 cm,40 cm and 80 cm,respectively,representing for the current,future~100 a and future~200 a SLR of mangrove forests along the Jiulong River Estuary,China.SLR directly decreased mangrove individual density and inhibited the growth of mangrove vegetation.The total vegetation biomasses were(12.86±0.95)kg/m^2,(7.97±0.90)kg/m^2 and(3.89±0.63)kg/m^2 at Sites SLR 0 cm,SLR40 cm and SLR 80 cm,respectively.The total vegetation OC stock decreased by approximately 3.85 kg/m^2(in terms of C)from Site SLR 0 cm to Site SLR 80 cm.Significantly lower vegetation biomass and OC stock of various components(stem,branch,leaf and root)were found at Site SLR 80 cm.Annual increments of vegetation biomass and OC stock also decreased with SLR increase.Moreover,significant lower sedimentation rate was found at Site SLR 80 cm.These indicated that SLR will decrease mangrove vegetation biomass and OC stock,which may reduce global blue carbon sink by mangroves,exacerbate global warming and give positive feedback to SLR. 展开更多
关键词 sea level rise vegetation biomass organic carbon stock COMPONENT mangrove forest Kandelia obovata
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部