期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
OsMYB84,a transcriptional regulator of OsCOPT2 and OsHMA5,modulates copper uptake and transport and yield production in rice
1
作者 Jingli ding Chenchen Ji +6 位作者 Lu Yu Chuang Wang guangda ding Sheliang Wang Lei Shi Fangsen Xu Hongmei Cai 《The Crop Journal》 SCIE CSCD 2024年第2期456-469,共14页
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv... Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu. 展开更多
关键词 OsMYB84 OsCOPT2 OsHMA5 COPPER RICE
下载PDF
Induction of jasmonic acid biosynthetic genes inhibits Arabidopsis growth in response to low boron 被引量:6
2
作者 Yupu Huang Sheliang Wang +4 位作者 Chuang Wang guangda ding Hongmei Cai Lei Shi Fangsen Xu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第5期937-948,共12页
The essential micronutrient boron(B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid(JA) in plant growth inhibition under B deficiency remains unclear. Here,we re... The essential micronutrient boron(B) has key roles in cell wall integrity and B deficiency inhibits plant growth. The role of jasmonic acid(JA) in plant growth inhibition under B deficiency remains unclear. Here,we report that low B elevates JA biosynthesis in Arabidopsis thaliana by inducing the expression of JA biosynthesis genes. Treatment with JA inhibited plant growth and, a JA biosynthesis inhibitor enhanced plant growth, indicating that the JA induced by B deficiency affects plant growth. Furthermore,examination of the JA signaling mutants jasmonate resistant1, coronatine insensitive1-2, and myc2 showed that JA signaling negatively regulates plant growth under B deficiency. We identified a low-B responsive transcription factor, ERF018, and used yeast one-hybrid assays and transient activation assays in Nicotiana benthamiana leaf cells to demonstrate that ERF018 activates the expression of JA biosynthesis genes. ERF018 overexpression(OE)lines displayed stunted growth and up-regulation of JA biosynthesis genes under normal B conditions,compared to Col-0 and the difference between ERF018 OE lines and Col-0 diminished under low B.These results suggest that ERF018 enhances JA biosynthesis and thus negatively regulates plant growth. Taken together, our results highlight the importance of JA in the effect of low B on plant growth. 展开更多
关键词 Arabidopsis thaliana ERF018 low B jasmonic acid biosynthesis jasmonic acid signaling plant growth
原文传递
Vascular Cambium-Localized AtSPDT Mediates Xylem-to-Phloem Transfer of Phosphorus for Its Preferential Distribution in Arabidopsis 被引量:4
3
作者 guangda ding Gui Jie Lei +4 位作者 Naoki Yamaji Kengo Yokosho Namiki Mitani-Ueno Sheng Huang Jian Feng Ma 《Molecular Plant》 SCIE CAS CSCD 2020年第1期99-111,共13页
During plant growth and development mineral elements are preferentially delivered to different organs and tissues to meet the differential demand. It has been shown that the preferential distribution of mineral nutrie... During plant growth and development mineral elements are preferentially delivered to different organs and tissues to meet the differential demand. It has been shown that the preferential distribution of mineral nutrients in gramineous plants is mediated by node-based transporters, but the mechanisms of preferential distribution in dicots are poorly understood. Here, we report a distinct mechanism for the preferential distribution of phosphorus (P) in Arabidopsis plants, revealed by detailed functional analysis of AtSPDT/AtSULTR3;4 (SULTR-like P Distribution Transporter), a homolog of rice OsSPDT. Like OsSPDT, AtSPDT is localized at the plasma membrane and showed proton-dependent transport activity for P. Interestingly, we found that AtSPDT is mainly expressed in the rosette basal region and leaf petiole, and its expression is up-regulated by P deficiency. Tissue-specific analysis showed that AtSPDT is mainly located in the vascular cambium of different organs, as well as in the parenchyma tissues of both xylem and phloem regions. Knockout of AtSPDT inhibited the growth of new leaves under low P due to decreased P distribution to those organs. The seed yields of the wild-type and atspdt mutant plants are similar, but the seeds of mutant plants contain – less P. These results indicate that AtSPDT localized in the vascular cambium is involved in preferential distribution of P to the developing tissues, through xylem-to-phloem transfer mainly at the rosette basal region and leaf petiole. 展开更多
关键词 A rabidopsis THALIANA phosphate transporter SPDT PHOSPHORUS DISTRIBUTION vascular CAMBIUM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部