期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
全固态钠离子电池硫系化合物电解质 被引量:9
1
作者 陈光海 白莹 +2 位作者 高永晟 吴锋 吴川 《物理化学学报》 SCIE CAS CSCD 北大核心 2020年第5期44-62,共19页
全固态钠离子电池具有资源丰富、安全性高等优势,作为未来大规模储能的重要选择而成为近年来先进二次电池前沿研究热点。钠离子硫系化合物电解质室温离子电导率高、弹性模量高、容易冷压成型,能增强电极/电解质界面接触、减小界面阻抗... 全固态钠离子电池具有资源丰富、安全性高等优势,作为未来大规模储能的重要选择而成为近年来先进二次电池前沿研究热点。钠离子硫系化合物电解质室温离子电导率高、弹性模量高、容易冷压成型,能增强电极/电解质界面接触、减小界面阻抗、缓冲电极材料在充放电过程中的应力/应变,是全固态钠离子电池的研究重点。本文对钠离子硫系化合物固态电解质的结构及性质进行了总结,讨论了硫系化合物电解质的本征特性、与电极的界面稳定性,并介绍了硫系化合物全固态钠离子电池的研究现状,最后分析了硫系化合物电解质面临的挑战及今后的发展方向。 展开更多
关键词 全固态钠离子电池 硫系化合物电解质 电导率 化学稳定性 界面
下载PDF
Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode 被引量:18
2
作者 Yanxia Yuan Feng Wu +2 位作者 guanghai chen Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期197-203,共7页
Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impede... Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential. However, the perplexing issue of lithium dendrite growth impedes the commercial application. The initial nucleation and low Li ions diffusion rate in the electrolyte/electrode interface dominate the deposition behavior. Therefore, a uniform and flexible interface is urgently needed. Here, a facile method is proposed to prepare a thin and porous LiF-rich layer (TPL) by the in-situ reaction of small amount of ammonium hydrogen difluoride (NH4HF2) and Li metal. The deposition morphology on Li metal anode with LiF layer is significantly flat and homogeneous owning to low lateral diffusion barrier on LiF crystals and the porous structure of TPL film. Additionally, the symmetrical cells made with such TPL Li anodes show significantly stable cycling over 100 cycles at high current density of 6 mA/cm^2. The TPL Li|LiFePO4 full cells keep over 99% capacity retention after 100 cycles at 2.0 C. This approach serves as a facile and controllable way of adjusting the protective layer on Li metal. 展开更多
关键词 LITHIUM metal anode POROUS LIF LAYER LITHIUM DENDRITE Artificial SEI
下载PDF
Reversible and irreversible heat generation of NCA/Si–C pouch cell during electrochemical energy-storage process 被引量:8
3
作者 Ying Bai Limin Li +8 位作者 Yu Li guanghai chen Huichun Zhao Zhaohua Wang Chuan Wu Hongyun Ma Xinquan Wang Hongyue Cui Jiang Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期95-102,共8页
To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we re... To meet the requirements of electronic vehicles(EVs) and hybrid electric vehicles(HEVs),the high energy density Li Ni_(0.8) Co_(0.15) Al_(0.05) O_2(NCA) cathode and Si–C anode have attracted more attention.Here we report the thermal behaviors of NCA/Si–C pouch cell during the charge/discharge processes at different current densities.The total heat generations are derived from the surface temperature change during electrochemical Li+insertion/extraction in adiabatic surrounding.The reversible heat is determined by the entropic coefficients,which are related with open-circuit voltage at different temperatures; while the irreversible heat is determined by the internal resistance,which can be obtained via V–I characteristic,electrochemical impedance spectroscopy and hybrid pulse power characterization(HPPC).During the electrochemical process,the reversible heat contributes less than 10% to total heat generation; and the heat generated in charge process is less than that in discharge process.The results of thermal behaviors analyses are conducive to understanding the safety management and paving the way for building a reliable thermal model of high energy density lithium ion battery. 展开更多
关键词 HEAT generation Internal resistance REVERSIBLE HEAT IRREVERSIBLE HEAT POUCH CELL
下载PDF
Alloyed Pt-Sn nanoparticles on hierarchical nitrogen-doped carbon nanocages for advanced glycerol electrooxidation
4
作者 Jietao Jiang Liqi Zhou +7 位作者 Fengfei Xu guanghai chen Xiaoyu Liu Zhen Shen Lijun Yang Qiang Wu Xizhang Wang Zheng Hu 《Nano Research》 SCIE EI CSCD 2024年第5期4055-4061,共7页
Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond ... Glycerol is an alternative sustainable fuel for fuel cells,and efficient electrocatalyst is crucial for glycerol oxidation reaction(GOR).The promising Pt catalysts are subject to the inadequate capability of C-C bond cleavage and the susceptibility to poisoning.Herein,Pt-Sn alloyed nanoparticles are immobilized on hierarchical nitrogen-doped carbon nanocages(hNCNCs)by convenient ethylene glycol reduction and subsequent thermal reduction.The optimal Pt_(3)Sn/hNCNC catalyst exhibits excellent GOR performance with a high mass activity(5.9 A·mg_(Pt)^(-1)),which is 2.7 and 5.4 times higher than that of Pt/hNCNC and commercial Pt/C,respectively.Such an enhancement can be mainly ascribed to the increased anti-poisoning and C-C bond cleavage capability due to the Pt_(3)Sn alloying effect and Sn-enriched surface,the high dispersion of Pt_(3)Sn active species due to N-participation,as well as the high accessibility of Pt_(3)Sn active species due to the three-dimensional(3D)hierarchical architecture of hNCNC.This study provides an effective GOR electrocatalyst and convenient approach for catalyst preparation. 展开更多
关键词 Pt_(3)Sn alloy hierarchical nitrogen-doped carbon nanocages glycerol electrooxidation anti-poisoning C-C bond cleavage
原文传递
Self-supported NiFe-LDH nanosheets on NiMo-based nanorods as high-performance bifunctional electrocatalysts for overall water splitting at industrial-level current densities
5
作者 Yan Zhang Biao Feng +9 位作者 MingLei Yan Zhen Shen Yiqun chen Jingyi Tian Fengfei Xu guanghai chen Xizhang Wang Lijun Yang Qiang Wu Zheng Hu 《Nano Research》 SCIE EI CSCD 2024年第5期3769-3776,共8页
Efficient,durable and economic electrocatalysts are crucial for commercializing water electrolysis technology.Herein,we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-laye... Efficient,durable and economic electrocatalysts are crucial for commercializing water electrolysis technology.Herein,we report an advanced bifunctional electrocatalyst for alkaline water splitting by growing NiFe-layered double hydroxide(NiFe-LDH)nanosheet arrays on the conductive NiMo-based nanorods deposited on Ni foam to form a three-dimensional(3D)architecture,which exhibits exceptional performances for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In overall water splitting,only the low operation voltages of 1.45/1.61 V are required to reach the current density of 10/500 mA·cm^(-2),and the continuous water splitting at an industrial-level current density of 500 mA·cm^(-2) shows a negligible degradation(1.8%)of the cell voltage over 1000 h.The outstanding performance is ascribed to the synergism of the HER-active NiMo-based nanorods and the OER-active NiFe-LDH nanosheet arrays of the hybridized 3D architecture.Specifically,the dense NiFe-LDH nanosheet arrays enhance the local pH on cathode by retarding OH-diffusion and enlarge the electrochemically active surface area on anode,while the conductive NiMo-based nanorods on Ni foam much decrease the charge-transfer resistances of both electrodes.This study provides an efficient strategy to explore advanced bifunctional electrocatalysts for overall water splitting by rationally hybridizing HER-and OER-active components. 展开更多
关键词 alkaline water splitting bifunctional electrocatalysts layered double hydroxides high durability industrial current densities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部