期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Personal Thermal Management by Radiative Cooling and Heating
1
作者 Shidong Xue guanghan huang +3 位作者 Qing Chen Xungai Wang Jintu Fan Dahua Shou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期225-267,共43页
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea... Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications. 展开更多
关键词 Personal thermal management Radiative cooling and heating Thermal comfort Dynamic thermoregulation
下载PDF
Optical properties and chemical composition of PM_(2.5) in Shanghai in the spring of 2012 被引量:4
2
作者 guanghan huang Tiantao Cheng +7 位作者 Renjian Zhang Jun Tao Chunpeng Leng Yunwei Zhang Shuping Zha Deqin Zhang Xiang Li Chunyang Xu 《Particuology》 SCIE EI CAS CSCD 2014年第2期52-59,共8页
The semi-diurnal mean aerosol mass concentration, chemical composition, and optical properties of PM2.s were investigated in Shanghai during the spring of 2012. Slight pollution was observed during the study period. T... The semi-diurnal mean aerosol mass concentration, chemical composition, and optical properties of PM2.s were investigated in Shanghai during the spring of 2012. Slight pollution was observed during the study period. The average PM2.s concentration was 64.11± 22.83μg/m3. The mean coefficients of extinction, scattering, and absorption at 532 nm were 125.9 ± 78.5, 91.1 ± 56.3, and 34.9 ±23.6 Mm-1, respectively. A relatively low mean single scattering alhedo at 532 nm (0.73 ±0.04) and low level of elemental carbon (EC, 2.67± 1.96 μg/m3) suggested that the light absorption was enhanced due to the internal mixing of the EC. Sulfate contributed the most to aerosol light scattering in Shanghai. The chemical composition of PM2.5 was dominated by particulate organic matter, sulfate, nitrate, ammonium, and EC. Anthropogenic sources made a significant contribution to the emission and loading of the particulate pollutants. A relatively good correlation between the aerosol chemical composition and the cloud condensation nuclei (CCN) activation indicated that aerosol chemistry is an important factor that influences the saturated hygroscopicity and growth of the aerosol. 展开更多
关键词 PM2.5 Chemical compositionOptical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部