Mineral matter in a residue(RC G)from coal gasification(CG)was removed by two-stage acid leaching.Hierarchical activated carbon(HAC)was prepared by activating RC Gwith CO2.The performance of HAC on removing methylene ...Mineral matter in a residue(RC G)from coal gasification(CG)was removed by two-stage acid leaching.Hierarchical activated carbon(HAC)was prepared by activating RC Gwith CO2.The performance of HAC on removing methylene blue(MB)from an aqueous solution was investigated.HAC was characterized by N2 adsorption–desorption isotherm,Fourier transform infrared spectroscopy,and scanning electron microscopy.The results show that HAC exhibits hierarchical pore structure with high specific surface area(862.76 m2·g-1)and total pore volume(0.684 cm3·g-1),and abundant organic functional groups.The adsorption equilibrium data of MB on HAC are best fitted to the Redlich-Peterson.The kinetic data show that the pseudo-first-order model is more suitable at low MB concentration,while the advantages of the pseudo-second-orderand the Elovich models are more obvious as the concentration increases.According to the thermodynamic parameters,the HAC-MB adsorption process is spontaneous and endothermic.展开更多
Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/...Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/mass spectrometer and quadrupole exactive orbitrap mass spectrometer(QEOTMS) with an atmosphere pressure chemical ionization source in positive-ion mode,while BL was characterized with an X-ray photoelectron spectrometer(XRPES).The results show that the yields of SP2 and SP3 are much higher than those of SP1 and SP4,and the total SP yield is ca.39.0%.According to the analysis with XRPES,pyrrolic nitrogen atoms are the most abundant nitrogen existing forms in BL.Thousands of nitrogen-containing aromatics(NCAs) were resolved with QEOTMS and their molecular masses are mainly in the range of 200-450 u.The main NCAs are N1O1 and N1O2 class species with double bond equivalent values of 4-18 and carbon numbers of 7-30.The nitrogen atoms appear in pyridine s,quinolines,benzoquinolines or acridine,and dibenzoquinolines or naphthoquinolines,while the oxygen atoms exist in methoxy and furan rings.展开更多
Ultrasonic-assisted extraction(UAE)combined with medium pressure liquid chromatography(MPLC)was designed for carbazole separation from anthracene slag(AS).The effects of liquid/solid ratio,temperature,and extraction t...Ultrasonic-assisted extraction(UAE)combined with medium pressure liquid chromatography(MPLC)was designed for carbazole separation from anthracene slag(AS).The effects of liquid/solid ratio,temperature,and extraction times on carbazole separation were investigated.When using CC14 and ethyl acetate as extraction solvents and combining with MPLC,carbazole recovery and purity are 75.1%and 95.4%,respectively.The mechanism for carbazole separation were presumed by examining intermolecular interactions such as N-H…π,π-π,and C-Cl…πinteractions.These results demonstrate that UAE/MPLC has a considerable potential as a green and promising strategy for separating and purifying carbazole and other chemicals from AS.展开更多
Spent auricularia auricular substrate(SAAS)was oxidatively degraded with aqueous hydrogen peroxide(AHPO)/acetic anhydride(AAH)to produce carboxylic acids(CAs)under mild conditions.The results show that up to 53.6%of t...Spent auricularia auricular substrate(SAAS)was oxidatively degraded with aqueous hydrogen peroxide(AHPO)/acetic anhydride(AAH)to produce carboxylic acids(CAs)under mild conditions.The results show that up to 53.6%of the organic matter in SAAS was converted to the soluble species(SSs).In total 122 CAs were detected in the SSs by the analysis with a gas chromatograph/mass spectrometer,which can be classified into 29 group components,mainly being aliphatic acids and along with small amount of aromatic acids.Among the aliphatic acids,normal alkanedioic acids are the most abundant.The detected aromatic acids include benzoic acids,phthalic acids,trimellitic acids,pyromellitic acids,and their derivatives.The synergistic oxidation and the released·OH,CH3COO·,and HOO·induced by AHPO/AAH play crucial roles in oxidatively degrading SAAS.展开更多
In this work, the group contribution method of Chickos et al. was applied to estimate the fusion enthalpy of isonicotinic acid, and the obtained result(29.2 k J·mol^(-1)) showed a large difference with the value(...In this work, the group contribution method of Chickos et al. was applied to estimate the fusion enthalpy of isonicotinic acid, and the obtained result(29.2 k J·mol^(-1)) showed a large difference with the value(135 k J·mol^(-1)) as reported from literatures and as determined by differential scanning calorimetry(DSC). The results of DSC/TG measurement showed that the phase transition of isonicotinic acid from 187.27 °C to277.47 °C underwent a sublimation process, with a sublimation enthalpy of 128.03 k J·mol^(-1). An efficient analytical technique combining pyrolysis and gas chromatography/mass spectrometry(Py-GC/MS) was used to prove this conclusion.展开更多
The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement(MPC)matrix and the steel fibre.The composition of the MPC-matrix an...The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement(MPC)matrix and the steel fibre.The composition of the MPC-matrix and the immersion age of the specimens are experimentally investigated.The average bond strength and the pullout energy are investigated by analysing the experimental results.In addition,the microscopic characteristics of the interface transition zone are investigated using scanning electron microscopy(SEM).The experimental results showed that the bond performance between the MPC-matrix and the steel fibre decreased significantly with the increase of the duration of immersion in water.The average bond strength between the steel fibre and the MPC-matrix reduced by more than 50%when the specimens were immersed in the water for 28 days.The effect of the water on the interface between the steel fibre and the MPC-matrix was found to be more significant compared to the composition of the MPC-matrix.In addition,the MgO-KH2PO4 mole ratio of the MPC significantly influenced the water stability of the interface zone between the steel fibre and MPC-matrix.展开更多
Along with the rapid development of space technology,extraterrestrial exploration has gradually tended to further-distanced and longer-termed planet exploration.As the first step of an attempt for humans to build a pe...Along with the rapid development of space technology,extraterrestrial exploration has gradually tended to further-distanced and longer-termed planet exploration.As the first step of an attempt for humans to build a perpetual planet base,building a lunar base by in situ resource utilization(ISRU)will drastically reduce the reliance of supplies from Earth.Lunar resources including mineral resources,water/ice resources,volatiles,and solar energy will contribute to the establishment of a lunar base for long-term life support and scientific exploration missions,although we must consider the challenges from high vacuum,low gravity,extreme temperature conditions,etc.This article provides a comprehensive review of the past developing processes of ISRU and the latest progress of several ISRU technologies,including in situ water access,in situ oxygen production,in situ construction and manufacture,in situ energy utilization,and in situ life support and plant cultivation on the Moon.Despite being able to provide some material and energy supplies for lunar base construction and scientific exploration,the ISRU technologies need continuous validation and upgrade to satisfy the higher requirements from further lunar exploration missions.Ultimately,a 3-step development plan for lunar ISRU technologies in the next decade is proposed,which consists of providing technological solutions,conducting technical verification on payloads,and carrying out in situ experiments,with the ultimate aim of establishing a permanent lunar station and carrying out long-term lunar surface scientific activities.The overview of ISRU techniques and our suggestions will provide potential guidance for China’s future lunar exploration missions.展开更多
Strong coupling between plasmons and multiple different exciton states(MESs)enables the creation of multiple hybrid polariton states under ambient conditions.These hybrid states possess unique optical properties diffe...Strong coupling between plasmons and multiple different exciton states(MESs)enables the creation of multiple hybrid polariton states under ambient conditions.These hybrid states possess unique optical properties different from those of their separate identities,making them ideal candidates for exploiting room-temperature multimode hybridization and multiqubit operation.In this study,we revealed the static spectral response properties of plasmon-MES strong coupling via a fully quantum mechanics approach.These theoretical predictions were experimentally demonstrated in plasmonic nanocavities containing two and three different exciton species.Additionally,the dynamical absorption processes of such strong coupling systems were investigated,and results indicated that the damping of the hybrid polariton states induced by the strong coupling could be markedly modulated by the acoustic oscillations from the plasmonic nanocavities.Our findings contribute a theoretical approach for accurately describing the plasmon-MES interactions and a platform for developing the high-speed active plasmonic devices based on multiqubit strong coupling.展开更多
A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters c...A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters can be enhanced without complicating its gate driver and control circuits.Meanwhile,because of the expansibility of the coat circuit,the number of its basic cells can be adjusted regarding the actual application requirements.Moreover,in comparison with a conventional SEPIC converter,voltage stress on power switch and diodes of the presented topology is lower at the same output voltage,and thus semiconductor components with low on-resistance are chosen to improve conversion efficiency of converter.The operational principle and steady state analysis of the SEPIC converter with one of the proposed coat circuits have been discussed in detail,and a 300W laboratory prototype is implemented to prove the theoretical analysis of presented converter.展开更多
The emergence of super-resolution(SR)fluorescence microscopy has rejuvenated the search for new cellular substructures.However,SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the...The emergence of super-resolution(SR)fluorescence microscopy has rejuvenated the search for new cellular substructures.However,SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment.Thus,we developed SR fluorescence-assisted diffraction computational tomography(SR-FACT),which combines label-free three-dimensional optical diffraction tomography(ODT)with two-dimensional fluorescence Hessian structured illumination microscopy.The ODT module is capable of resolving the mitochondria,lipid droplets,the nuclear membrane,chromosomes,the tubular endoplasmic reticulum,and lysosomes.Using dual-mode correlated live-cell imaging for a prolonged period of time,we observed novel subcellular structures named dark-vacuole bodies,the majority of which originate from densely populated perinuclear regions,and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane.This work demonstrates the unique capabilities of SR-FACT,which suggests its wide applicability in cell biology in general.展开更多
The growth direction,morphology and microstructure of carbon nano-tubes(CNTs)play key roles for their potential applications in electronic and energy storage devices.However,effective synthesis of CNTs in high crystal...The growth direction,morphology and microstructure of carbon nano-tubes(CNTs)play key roles for their potential applications in electronic and energy storage devices.However,effective synthesis of CNTs in high crystallinity and desired microstructure still remains a tremendous challenge.Here we introduce an electric field for controlling the microstructure formation of CNTs.It reveals that the electric field not only make CNTs aligned parallel but also improve the density of CNTs.Especially,the microstructures of CNTs gradually change under electrical field.That is,graphite sheets are transformed from the"herringbone"structure to a highly crystalline structure,facilitating the transportation of electrons.Due to the improved aligned growth direction,high density and highly crystalline microstructure,the electrochemical performance of CNTs is greatly improved.When the CNTs are applied in supercapacitors,they present a high specific capacitance of 237 F/g,three times higher than that of the CNTs prepared without electrical field.Such microstructure modulation of CNTs by electric field would help to construct high performance electronic and energy storage devices.展开更多
Transmittance and chromaticity are essential requirements for optical performance of thin-film transistor(TFT)arrays.However,it is still a challenge to get high transmittance and excellent chromaticity at the same tim...Transmittance and chromaticity are essential requirements for optical performance of thin-film transistor(TFT)arrays.However,it is still a challenge to get high transmittance and excellent chromaticity at the same time.In this paper,optimized optical design by using antireflection film theory and optical phase modulation is demonstrated in low temperature poly-silicon(LTPS)TFT arrays.To realize high transmittance,the refractive index difference of adjacent films is modified by using silicon oxynitride(SiOxNy)with adjustable refractive index.To realize excellent chromaticity,the thicknesses of multilayer films are precisely regulated for antireflection of certain wavelength light.The results show that the transmittance and chromaticity have been improved by about 6%and 18‰,respectively,at the same time,which is a big step forward for high optical performance of TFT arrays.The device characteristics of the TFT arrays with the optimal design,such as threshold voltage and electron mobility,are comparable to those of conventional TFT arrays.The optimized optical design results in enhanced power-conversion efficiencies and perfects the multilayer film design on the basic theory,which has great practicability to be applied in TFT arrays.展开更多
As a low-cost photovoltaic technology, dye- sensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and in...As a low-cost photovoltaic technology, dye- sensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and increasing the device stability take the most impor- tance. Compared with conventional sandwich structure liquid-state DSSCs, monolithic all-solid-state mesoscopic solar cells based on mesoscopic carbon counter electrodes and solid-state electrolytes present much lower production cost and provide a prospect of long-term stability. This review presents the recent progress of materials and achievement for all-solid-state DSSCs. In particular, representative examples are highlighted with the results of our monolithic all-solid-state mesoscopic solar cell devices and modules.展开更多
基金financial support from the National Natural Science Foundation of China(51762042)the(2019PT-18)+1 种基金the Science and Technology Program of Shaanxi Province(2017GY-136,2018GY-086)the Shaanxi Province Education Department Key Scientific Research Project(18JS123)。
文摘Mineral matter in a residue(RC G)from coal gasification(CG)was removed by two-stage acid leaching.Hierarchical activated carbon(HAC)was prepared by activating RC Gwith CO2.The performance of HAC on removing methylene blue(MB)from an aqueous solution was investigated.HAC was characterized by N2 adsorption–desorption isotherm,Fourier transform infrared spectroscopy,and scanning electron microscopy.The results show that HAC exhibits hierarchical pore structure with high specific surface area(862.76 m2·g-1)and total pore volume(0.684 cm3·g-1),and abundant organic functional groups.The adsorption equilibrium data of MB on HAC are best fitted to the Redlich-Peterson.The kinetic data show that the pseudo-first-order model is more suitable at low MB concentration,while the advantages of the pseudo-second-orderand the Elovich models are more obvious as the concentration increases.According to the thermodynamic parameters,the HAC-MB adsorption process is spontaneous and endothermic.
基金Supported by the Key Project of Joint Fund from National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region(U1503293)the National Key Research and Development Program of China(2018YFB0604602)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/mass spectrometer and quadrupole exactive orbitrap mass spectrometer(QEOTMS) with an atmosphere pressure chemical ionization source in positive-ion mode,while BL was characterized with an X-ray photoelectron spectrometer(XRPES).The results show that the yields of SP2 and SP3 are much higher than those of SP1 and SP4,and the total SP yield is ca.39.0%.According to the analysis with XRPES,pyrrolic nitrogen atoms are the most abundant nitrogen existing forms in BL.Thousands of nitrogen-containing aromatics(NCAs) were resolved with QEOTMS and their molecular masses are mainly in the range of 200-450 u.The main NCAs are N1O1 and N1O2 class species with double bond equivalent values of 4-18 and carbon numbers of 7-30.The nitrogen atoms appear in pyridine s,quinolines,benzoquinolines or acridine,and dibenzoquinolines or naphthoquinolines,while the oxygen atoms exist in methoxy and furan rings.
基金Supported by the Key Project of Joint Fund for the research on Coal-Based Low Carbon Technology from National Natural Science Foundation of China and the Government of Shanxi(U1610223)Coal-based Key Scientific and Technological Projects of Shanxi Province(MJH2014-15)the National Key Research and Development Program of China(2018YFB0604602).
文摘Ultrasonic-assisted extraction(UAE)combined with medium pressure liquid chromatography(MPLC)was designed for carbazole separation from anthracene slag(AS).The effects of liquid/solid ratio,temperature,and extraction times on carbazole separation were investigated.When using CC14 and ethyl acetate as extraction solvents and combining with MPLC,carbazole recovery and purity are 75.1%and 95.4%,respectively.The mechanism for carbazole separation were presumed by examining intermolecular interactions such as N-H…π,π-π,and C-Cl…πinteractions.These results demonstrate that UAE/MPLC has a considerable potential as a green and promising strategy for separating and purifying carbazole and other chemicals from AS.
基金supported by the Seed Fund from Jilin Agricultural Science and Technology University([2016]No.Z02)Undergraduate Scientific and Technical innovation of Jilin Province(Grant[2016]No.030).
文摘Spent auricularia auricular substrate(SAAS)was oxidatively degraded with aqueous hydrogen peroxide(AHPO)/acetic anhydride(AAH)to produce carboxylic acids(CAs)under mild conditions.The results show that up to 53.6%of the organic matter in SAAS was converted to the soluble species(SSs).In total 122 CAs were detected in the SSs by the analysis with a gas chromatograph/mass spectrometer,which can be classified into 29 group components,mainly being aliphatic acids and along with small amount of aromatic acids.Among the aliphatic acids,normal alkanedioic acids are the most abundant.The detected aromatic acids include benzoic acids,phthalic acids,trimellitic acids,pyromellitic acids,and their derivatives.The synergistic oxidation and the released·OH,CH3COO·,and HOO·induced by AHPO/AAH play crucial roles in oxidatively degrading SAAS.
文摘In this work, the group contribution method of Chickos et al. was applied to estimate the fusion enthalpy of isonicotinic acid, and the obtained result(29.2 k J·mol^(-1)) showed a large difference with the value(135 k J·mol^(-1)) as reported from literatures and as determined by differential scanning calorimetry(DSC). The results of DSC/TG measurement showed that the phase transition of isonicotinic acid from 187.27 °C to277.47 °C underwent a sublimation process, with a sublimation enthalpy of 128.03 k J·mol^(-1). An efficient analytical technique combining pyrolysis and gas chromatography/mass spectrometry(Py-GC/MS) was used to prove this conclusion.
基金Financial support from National Key R&D Program of China(2016YFE0125600)National Natural Science Foundation of China(Grant No.51308504)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_16R67),Scientific&Technological Project of Henan Province(152102310068)Training Program of Young-backbone teachers in Universities of Henan Province of China are gratefully acknowledged.
文摘The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement(MPC)matrix and the steel fibre.The composition of the MPC-matrix and the immersion age of the specimens are experimentally investigated.The average bond strength and the pullout energy are investigated by analysing the experimental results.In addition,the microscopic characteristics of the interface transition zone are investigated using scanning electron microscopy(SEM).The experimental results showed that the bond performance between the MPC-matrix and the steel fibre decreased significantly with the increase of the duration of immersion in water.The average bond strength between the steel fibre and the MPC-matrix reduced by more than 50%when the specimens were immersed in the water for 28 days.The effect of the water on the interface between the steel fibre and the MPC-matrix was found to be more significant compared to the composition of the MPC-matrix.In addition,the MgO-KH2PO4 mole ratio of the MPC significantly influenced the water stability of the interface zone between the steel fibre and MPC-matrix.
基金supported by the National Key Research and Development Program of China(grant no.2021YFA0717200).
文摘Along with the rapid development of space technology,extraterrestrial exploration has gradually tended to further-distanced and longer-termed planet exploration.As the first step of an attempt for humans to build a perpetual planet base,building a lunar base by in situ resource utilization(ISRU)will drastically reduce the reliance of supplies from Earth.Lunar resources including mineral resources,water/ice resources,volatiles,and solar energy will contribute to the establishment of a lunar base for long-term life support and scientific exploration missions,although we must consider the challenges from high vacuum,low gravity,extreme temperature conditions,etc.This article provides a comprehensive review of the past developing processes of ISRU and the latest progress of several ISRU technologies,including in situ water access,in situ oxygen production,in situ construction and manufacture,in situ energy utilization,and in situ life support and plant cultivation on the Moon.Despite being able to provide some material and energy supplies for lunar base construction and scientific exploration,the ISRU technologies need continuous validation and upgrade to satisfy the higher requirements from further lunar exploration missions.Ultimately,a 3-step development plan for lunar ISRU technologies in the next decade is proposed,which consists of providing technological solutions,conducting technical verification on payloads,and carrying out in situ experiments,with the ultimate aim of establishing a permanent lunar station and carrying out long-term lunar surface scientific activities.The overview of ISRU techniques and our suggestions will provide potential guidance for China’s future lunar exploration missions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11874438,22105063,61905066,61805070,1200410122103024)+1 种基金Natural Science Foundation of Guangdong(Grant Nos.2021A1515010050,and 2018A030313722)Guangdong Polytechnic Normal University Talent Introduction Project Foundation of China(Grant No.XY2019022)。
文摘Strong coupling between plasmons and multiple different exciton states(MESs)enables the creation of multiple hybrid polariton states under ambient conditions.These hybrid states possess unique optical properties different from those of their separate identities,making them ideal candidates for exploiting room-temperature multimode hybridization and multiqubit operation.In this study,we revealed the static spectral response properties of plasmon-MES strong coupling via a fully quantum mechanics approach.These theoretical predictions were experimentally demonstrated in plasmonic nanocavities containing two and three different exciton species.Additionally,the dynamical absorption processes of such strong coupling systems were investigated,and results indicated that the damping of the hybrid polariton states induced by the strong coupling could be markedly modulated by the acoustic oscillations from the plasmonic nanocavities.Our findings contribute a theoretical approach for accurately describing the plasmon-MES interactions and a platform for developing the high-speed active plasmonic devices based on multiqubit strong coupling.
基金supported in part by the National Natural Science Foundation of China(51707103)in part by Guangxi Key Research and Development Program(2022AB05028).
文摘A family of coat circuits for SEPIC converters to improve their boost capability is presented.The present coat circuit does not contain any active switches,so the voltage conversion ratio of the presented converters can be enhanced without complicating its gate driver and control circuits.Meanwhile,because of the expansibility of the coat circuit,the number of its basic cells can be adjusted regarding the actual application requirements.Moreover,in comparison with a conventional SEPIC converter,voltage stress on power switch and diodes of the presented topology is lower at the same output voltage,and thus semiconductor components with low on-resistance are chosen to improve conversion efficiency of converter.The operational principle and steady state analysis of the SEPIC converter with one of the proposed coat circuits have been discussed in detail,and a 300W laboratory prototype is implemented to prove the theoretical analysis of presented converter.
基金supported by grants from the National Natural Science Foundation of China(91750203,91854112,81925022,31521062,91850111,31901061,and 31327901)the National Science and Technology Major Project Programme(2016YFA0500400,2017YFC0110203,and SQ2016YFJC040028)+3 种基金the Beijing Natural Science Foundation(L172003,7152079,and 5194026)the National Postdoctoral Program for Innovative Talents(BX201800008)the China Postdoctoral Science Foundation(2019M650329)the High-performance Computing Platform of Peking University.
文摘The emergence of super-resolution(SR)fluorescence microscopy has rejuvenated the search for new cellular substructures.However,SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment.Thus,we developed SR fluorescence-assisted diffraction computational tomography(SR-FACT),which combines label-free three-dimensional optical diffraction tomography(ODT)with two-dimensional fluorescence Hessian structured illumination microscopy.The ODT module is capable of resolving the mitochondria,lipid droplets,the nuclear membrane,chromosomes,the tubular endoplasmic reticulum,and lysosomes.Using dual-mode correlated live-cell imaging for a prolonged period of time,we observed novel subcellular structures named dark-vacuole bodies,the majority of which originate from densely populated perinuclear regions,and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane.This work demonstrates the unique capabilities of SR-FACT,which suggests its wide applicability in cell biology in general.
文摘The growth direction,morphology and microstructure of carbon nano-tubes(CNTs)play key roles for their potential applications in electronic and energy storage devices.However,effective synthesis of CNTs in high crystallinity and desired microstructure still remains a tremendous challenge.Here we introduce an electric field for controlling the microstructure formation of CNTs.It reveals that the electric field not only make CNTs aligned parallel but also improve the density of CNTs.Especially,the microstructures of CNTs gradually change under electrical field.That is,graphite sheets are transformed from the"herringbone"structure to a highly crystalline structure,facilitating the transportation of electrons.Due to the improved aligned growth direction,high density and highly crystalline microstructure,the electrochemical performance of CNTs is greatly improved.When the CNTs are applied in supercapacitors,they present a high specific capacitance of 237 F/g,three times higher than that of the CNTs prepared without electrical field.Such microstructure modulation of CNTs by electric field would help to construct high performance electronic and energy storage devices.
基金This work was supported by the Shenzhen Science and Technology Innovation(Grant No.JCYJ20180507181702150)the Guangdong Science and Technology Plan Project(Grant No.2019A050510011)the National Natural Science Foundation of China(Grant No.61504004).
文摘Transmittance and chromaticity are essential requirements for optical performance of thin-film transistor(TFT)arrays.However,it is still a challenge to get high transmittance and excellent chromaticity at the same time.In this paper,optimized optical design by using antireflection film theory and optical phase modulation is demonstrated in low temperature poly-silicon(LTPS)TFT arrays.To realize high transmittance,the refractive index difference of adjacent films is modified by using silicon oxynitride(SiOxNy)with adjustable refractive index.To realize excellent chromaticity,the thicknesses of multilayer films are precisely regulated for antireflection of certain wavelength light.The results show that the transmittance and chromaticity have been improved by about 6%and 18‰,respectively,at the same time,which is a big step forward for high optical performance of TFT arrays.The device characteristics of the TFT arrays with the optimal design,such as threshold voltage and electron mobility,are comparable to those of conventional TFT arrays.The optimized optical design results in enhanced power-conversion efficiencies and perfects the multilayer film design on the basic theory,which has great practicability to be applied in TFT arrays.
基金Acknowledgements The authors acknowledge the financial support by the National High Technology Research and Development Program of China (863 Program, No. SS2013AA50303), the National Natural Science Foundation of China (Grant No. 61106056) and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.
文摘As a low-cost photovoltaic technology, dye- sensitized solar cell (DSSC) has attracted widespread attention in the past decade. During its development to commercial application, decreasing the production cost and increasing the device stability take the most impor- tance. Compared with conventional sandwich structure liquid-state DSSCs, monolithic all-solid-state mesoscopic solar cells based on mesoscopic carbon counter electrodes and solid-state electrolytes present much lower production cost and provide a prospect of long-term stability. This review presents the recent progress of materials and achievement for all-solid-state DSSCs. In particular, representative examples are highlighted with the results of our monolithic all-solid-state mesoscopic solar cell devices and modules.