期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Constructed Mott-Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O_(2) Battery
1
作者 Yongji Xia Le Wang +7 位作者 Guiyang Gao Tianle Mao Zhenjia Wang Xuefeng Jin Zheyu Hong Jiajia Han Dong-Liang Peng guanghui yue 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期42-58,共17页
Lithium-oxygen batteries(LOBs)with high energy density are a promising advanced energy storage technology.However,the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in t... Lithium-oxygen batteries(LOBs)with high energy density are a promising advanced energy storage technology.However,the slow cathodic redox kinetics during cycling causes the discharge products to fail to decompose in time,resulting in large polarization and battery failure in a short time.Therefore,a self-supporting interconnected nanosheet array network NiCo_(2)O_(4)/MnO_(2)with a Mott-Schottky heterostructure on titanium paper(TP-NCO/MO)is ingeniously designed as an efficient cathode catalyst material for LOBs.This heterostructure can accelerate electron transfer and influence the charge transfer process during adsorption of intermediate by triggering the interface disturbance at the heterogeneous interface,thus accelerating oxygen reduction and oxygen evolution kinetics and regulating product decomposition,which is expected to solve the above problems.The meticulously designed unique structural advantages enable the TP-NCO/MO cathode catalyst to exhibit an astounding ultra-long cycle life of 800 cycles and an extraordinarily low overpotential of 0.73 V.This study utilizes a simple method to cleverly regulate the morphology of the discharge products by constructing a Mott-Schottky heterostructure,providing important reference for the design of efficient catalysts aimed at optimizing the adsorption of reaction intermediates. 展开更多
关键词 Mott-Schottky heterostructure Lithium-oxygen batteries ELECTROCATALYSTS ELECTRODEPOSITION
下载PDF
Novel Ag@Nitrogen-doped Porous Carbon Composite with High Electrochemical Performance as Anode Materials for Lithium-ion Batteries 被引量:6
2
作者 Yuqing Chen Jintang Li +1 位作者 guanghui yue Xuetao Luo 《Nano-Micro Letters》 SCIE EI CAS 2017年第3期82-92,共11页
A novel Ag@nitrogen-doped porous carbon(Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries(LIBs). Using this method, Ag nanoparticles(Ag NPs) w... A novel Ag@nitrogen-doped porous carbon(Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries(LIBs). Using this method, Ag nanoparticles(Ag NPs) were embedded in NPC through thermal decomposition of Ag NO_3 in the pores of NPC. The reversible capacity of Ag-NPC remained at 852 m Ah g^(-1)after 200 cycles at a current density of 0.1 A g^(-1), showing its remarkable cycling stability. The enhancement of the electrochemical properties such as cycling performance,reversible capacity and rate performance of Ag-NPC compared to the NPC contributed to the synergistic effects between Ag NPs and NPC. 展开更多
关键词 Nitrogen-doped porous carbon Ag nanoparticles Synergistic effects Lithium-ion batteries
下载PDF
CuCr_2O_4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries 被引量:2
3
作者 Jiandi Liu Yanyan Zhao +4 位作者 Xin Li Chunge Wang Yaping Zeng guanghui yue Qiang Chen 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期30-39,共10页
Rechargeable lithium–oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the e... Rechargeable lithium–oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium–oxygen batteries(LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component.Hence, we aim to demonstrate that CuCr_2O_4@rGO(CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g^(-1) at a current density of 200 mA g^(-1). The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO. 展开更多
关键词 CuCr2O4@rGO nanocomposites Cathode catalyst Lithium–oxygen batteries
下载PDF
Amorphous CoSnO_3@rGO nanocomposite as an efficient cathode catalyst for long-life Li-O_2 batteries 被引量:1
4
作者 guanghui yue Jiandi Liu +3 位作者 Jiangtao Han Donghui Qin Qiang Chen Jianxiong Shao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第12期1951-1959,共9页
An amorphous CoSnO3@rGO nanocomposite fabricated using a surfactant‐assisted assembly method combined with thermal treatment served as a catalyst for non‐aqueous lithium‐oxygen(Li‐O2)batteries.In contrast to the s... An amorphous CoSnO3@rGO nanocomposite fabricated using a surfactant‐assisted assembly method combined with thermal treatment served as a catalyst for non‐aqueous lithium‐oxygen(Li‐O2)batteries.In contrast to the specific surface area of the bare CoSnO3 nanoboxes(104.3 m2 g–1),the specific surface area of the CoSnO3@rGO nanocomposite increased to approximately 195.8 m2 g–1 and the electronic conductivity also improved.The increased specific surface area provided more space for the deposition of Li2O2,while the improved electronic conductivity accelerated the decomposition of Li2O2.Compared to bare CoSnO3,the overpotential reduced by approximately 20 and 60 mV at current densities of 100 and 500 mA g?1 when CoSnO3@rGO was used as the catalyst.A Li‐O2 battery using a CoSnO3@rGO nanocomposite as the cathode catalyst cycled indicated a superior cyclic stability of approximately 130 cycles at a current density of 200 mA g–1 with a limited capacity of 1000 mAh g–1,which is 25 cycles more than that of the bare amorphous CoSnO3 nanoboxes. 展开更多
关键词 Amorphous CoSnO3 nanoboxe NANOCOMPOSITE Li‐O2 battery Cathode catalyst
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部