The liquid structure of Fe-4.30C and Fe-4.30C-0.21Ce alloys was studied by high temperature X-ray diffractometer. The results show that for Fe-C alloy the nearest neighbor distance of the eutectic alloy is 0.259-0.260...The liquid structure of Fe-4.30C and Fe-4.30C-0.21Ce alloys was studied by high temperature X-ray diffractometer. The results show that for Fe-C alloy the nearest neighbor distance of the eutectic alloy is 0.259-0.260 nm at the temperature range of 1200-1400℃, which increases to 0.269-0.271 nm with the addition of 0.21% (mass fraction) Ce in the Fe-C alloy at the same temperature range. There is a pre-peak at Q = 15.5 nm-1 on the original intensity curve and structure factor S(Q) of the liquid Fe-4.30C-0.21Ce alloy, which was caused by the Ce atoms in the C-Ce clusters. Combined with the shared face, the tetragonal structure can meet the requirement for the distance of Ce-Ce atoms. It also shows that the cluster size in the liquid Fe-4.30C-0.21Ce alloy increases with the decreasing temperature.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.59871025).
文摘The liquid structure of Fe-4.30C and Fe-4.30C-0.21Ce alloys was studied by high temperature X-ray diffractometer. The results show that for Fe-C alloy the nearest neighbor distance of the eutectic alloy is 0.259-0.260 nm at the temperature range of 1200-1400℃, which increases to 0.269-0.271 nm with the addition of 0.21% (mass fraction) Ce in the Fe-C alloy at the same temperature range. There is a pre-peak at Q = 15.5 nm-1 on the original intensity curve and structure factor S(Q) of the liquid Fe-4.30C-0.21Ce alloy, which was caused by the Ce atoms in the C-Ce clusters. Combined with the shared face, the tetragonal structure can meet the requirement for the distance of Ce-Ce atoms. It also shows that the cluster size in the liquid Fe-4.30C-0.21Ce alloy increases with the decreasing temperature.