Ibuprofen(IBU),a nonsteroidal anti-inflammatory drug,is becoming an important member of pharmaceuticals and personal care products(PPCPs)as emerging pollutants.To degrade IBU,magnetic Fe_3C nanoparticles embedded on N...Ibuprofen(IBU),a nonsteroidal anti-inflammatory drug,is becoming an important member of pharmaceuticals and personal care products(PPCPs)as emerging pollutants.To degrade IBU,magnetic Fe_3C nanoparticles embedded on N-doped carbon(Fe_3C/NC)were prepared as a catalyst by a sol–gel combustion method.As characterized,the Fe_3C/NC nanoparticles were composed of a NC nano-sheet and capsulated Fe_3C particles on the sheet.The Fe_3C/NC nanoparticles were confirmed an efficient catalyst for peroxymonosulfate(PMS)activation to generate sulfate radicals(SO_4^(·-)),single oxygen(~1O_2)and hydroxyl radicals(·OH)toward the degradation of IBU.The added IBU(10 mg/L)was almost completely removed in 30 min by using 0.1 g/L Fe_3C/NC and 2 g/L PMS.The catalyst was confirmed to have good ability and excellent reusability through leaching measurements and cycle experiments.A catalytic mechanism was proposed for the catalytic activation of PMS on Fe_3C/NC,which involves both Fe_3C reactive sites and N-doped carbon matrix as reactive sites in Fe_3C/NC.Moreover,the degradation pathway of IBU in the Fe_3C/NC-PMS system was proposed according to the detections of degradation intermediates.展开更多
基金supported by the National Natural Science Foundation of China(No. 81470222)the Science and Technology Project of Chongqing(No. cstc2017jcyj B0160)the Science and Technology Project of Yuzhong District,Chongqing(No. 20170120)
基金supported by the National Natural Science Foundation of China (Nos. 21777194 and 21507168)
文摘Ibuprofen(IBU),a nonsteroidal anti-inflammatory drug,is becoming an important member of pharmaceuticals and personal care products(PPCPs)as emerging pollutants.To degrade IBU,magnetic Fe_3C nanoparticles embedded on N-doped carbon(Fe_3C/NC)were prepared as a catalyst by a sol–gel combustion method.As characterized,the Fe_3C/NC nanoparticles were composed of a NC nano-sheet and capsulated Fe_3C particles on the sheet.The Fe_3C/NC nanoparticles were confirmed an efficient catalyst for peroxymonosulfate(PMS)activation to generate sulfate radicals(SO_4^(·-)),single oxygen(~1O_2)and hydroxyl radicals(·OH)toward the degradation of IBU.The added IBU(10 mg/L)was almost completely removed in 30 min by using 0.1 g/L Fe_3C/NC and 2 g/L PMS.The catalyst was confirmed to have good ability and excellent reusability through leaching measurements and cycle experiments.A catalytic mechanism was proposed for the catalytic activation of PMS on Fe_3C/NC,which involves both Fe_3C reactive sites and N-doped carbon matrix as reactive sites in Fe_3C/NC.Moreover,the degradation pathway of IBU in the Fe_3C/NC-PMS system was proposed according to the detections of degradation intermediates.