Inspired by the constitution of things in the natural world,three-dimensional (3D)nanofiber scaffold/cells complex was constructed via the combination of electrospinning technology and origami techniques.The nanofiber...Inspired by the constitution of things in the natural world,three-dimensional (3D)nanofiber scaffold/cells complex was constructed via the combination of electrospinning technology and origami techniques.The nanofiber boxes prepared by origami provided a limited space for the layer-by-layer nanofiber films,and the human fetal osteoblasts (hFOBs)seeded on the both sides of the nanofiber films were expected to facilitate the bonding,of the adjacent nanofiber films through the secretion of extracellular matrix.Specifically,the hFOBs presented 3D distribution in the nanofiber scaffold,and they can stretch across the gaps between the adjacent nanofiber films,forming the cell layers and filling the whole 3D nanofiber scaffold.Eventually,a 3D block composed of electrospun nanofiber scaffold and cells was obtained',which possesses potential applications in bone tissue engineering.Interestingly,we also created 3D nanofiber structures that range from simple forms to intricate architectures via origami,indicating that the combination of electrospinning technology and origami techniques is a feasible method for the 3D construction of tissue engineering scaffolds.展开更多
基金the National Natural Science Foundation of China (51232002,51502095,31771027)the Guangdong Natural Science Funds for Distinguished Young Scholar (2016A030306018)the Guangdong Natural Science Funds (2017B090911008).
文摘Inspired by the constitution of things in the natural world,three-dimensional (3D)nanofiber scaffold/cells complex was constructed via the combination of electrospinning technology and origami techniques.The nanofiber boxes prepared by origami provided a limited space for the layer-by-layer nanofiber films,and the human fetal osteoblasts (hFOBs)seeded on the both sides of the nanofiber films were expected to facilitate the bonding,of the adjacent nanofiber films through the secretion of extracellular matrix.Specifically,the hFOBs presented 3D distribution in the nanofiber scaffold,and they can stretch across the gaps between the adjacent nanofiber films,forming the cell layers and filling the whole 3D nanofiber scaffold.Eventually,a 3D block composed of electrospun nanofiber scaffold and cells was obtained',which possesses potential applications in bone tissue engineering.Interestingly,we also created 3D nanofiber structures that range from simple forms to intricate architectures via origami,indicating that the combination of electrospinning technology and origami techniques is a feasible method for the 3D construction of tissue engineering scaffolds.