The corrosion and inhibition effect of magnesium-based rare-earth containing alloy Mg-10Gd-3Y-0.5Zr (GW103) was studied in an ethylene glycol (EG) solution mixed with organic inhibitors. The inhibition efficiencies of...The corrosion and inhibition effect of magnesium-based rare-earth containing alloy Mg-10Gd-3Y-0.5Zr (GW103) was studied in an ethylene glycol (EG) solution mixed with organic inhibitors. The inhibition efficiencies of piperazine and pyrazine inhibitors on the corrosion of GW103 were compared by means of potentiodynamic polarization curve, electrochemical impedance spectroscopy (EIS) and weight loss measurements. It was found that the corrosion process of GW103 alloy in EG solution was hindered by these two inhibitors and the inhibition of pyrazine was more effective than that of piperazine. It was implied that pyrazine could be an effective inhibitor for GW103 in an ethylene glycol coolant solution.展开更多
Stainless steel(SS)has unsatisfied corrosion resistance in many aggressive environments,particularly under a low p H condition in the bioleaching industry.In this study,through surface analyses and electrochemical mea...Stainless steel(SS)has unsatisfied corrosion resistance in many aggressive environments,particularly under a low p H condition in the bioleaching industry.In this study,through surface analyses and electrochemical measurements,the corrosion resistance of a novel Cu-bearing 316L SS was evaluated in the presence of an acid-producing bacterium,Acidithiobacillus caldus SM-1 that was able to create an extremely acidic corrosive environment.The significantly enhanced anti-microbiologically-inducedcorrosion performance could be explained by the intracellular reactive oxygen species(ROS)and Fenton reaction on the Cu-bearing 316L SS.展开更多
文摘The corrosion and inhibition effect of magnesium-based rare-earth containing alloy Mg-10Gd-3Y-0.5Zr (GW103) was studied in an ethylene glycol (EG) solution mixed with organic inhibitors. The inhibition efficiencies of piperazine and pyrazine inhibitors on the corrosion of GW103 were compared by means of potentiodynamic polarization curve, electrochemical impedance spectroscopy (EIS) and weight loss measurements. It was found that the corrosion process of GW103 alloy in EG solution was hindered by these two inhibitors and the inhibition of pyrazine was more effective than that of piperazine. It was implied that pyrazine could be an effective inhibitor for GW103 in an ethylene glycol coolant solution.
基金financially supported by the National Natural Science Foundation of China(Nos.51871050 and U1660118)the Fundamental Research Funds for the Central Universities(Nos.N180205021,N180203019,and N2002019)the Liaoning Revitalization Talents Program(No.XLYC1907158)。
文摘Stainless steel(SS)has unsatisfied corrosion resistance in many aggressive environments,particularly under a low p H condition in the bioleaching industry.In this study,through surface analyses and electrochemical measurements,the corrosion resistance of a novel Cu-bearing 316L SS was evaluated in the presence of an acid-producing bacterium,Acidithiobacillus caldus SM-1 that was able to create an extremely acidic corrosive environment.The significantly enhanced anti-microbiologically-inducedcorrosion performance could be explained by the intracellular reactive oxygen species(ROS)and Fenton reaction on the Cu-bearing 316L SS.