Convergence of modified truncated Euler-Maruyama(MTEM)method for stochastic differential equations(SDEs)with(1/2+α)-Holder continuous diffusion coefficients are investigated in this paper.We prove that the MTEM metho...Convergence of modified truncated Euler-Maruyama(MTEM)method for stochastic differential equations(SDEs)with(1/2+α)-Holder continuous diffusion coefficients are investigated in this paper.We prove that the MTEM method for SDE converges to the exact solution in L9 sense under given conditions.Two examples are provided to support our conclusions.展开更多
The p-th moment and almos t sure st ability with general decay rate of the exact solutions of neutral stochastic differential delayed equations with Markov switching are investigated under given conditions. Two exampl...The p-th moment and almos t sure st ability with general decay rate of the exact solutions of neutral stochastic differential delayed equations with Markov switching are investigated under given conditions. Two examples are provided to support the conclusions.展开更多
We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper.Strong convergence rate(at fixed point)of the corresponding Euler-Maruy...We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper.Strong convergence rate(at fixed point)of the corresponding Euler-Maruyama method is obtained when coefficients f and g both satisfy local Lipschitz and linear growth conditions.An example is provided to interpret our conclusions.Our result generalizes and improves the conclusion in[J.Gao,H.Liang,S.Ma,Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay,Appl.Math.Comput.,348(2019)385-398.]展开更多
We study the large deviation principle of stochastic differential equations with non-Lipschitzian and non-homogeneous coefficients. We consider at first the large deviation principle when the coefficients σ and b are...We study the large deviation principle of stochastic differential equations with non-Lipschitzian and non-homogeneous coefficients. We consider at first the large deviation principle when the coefficients σ and b are bounded, then we generalize the conclusion to unbounded case by using bounded approximation program. Our results are generalization of S. Fang-T. Zhang's results.展开更多
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.1192013).
文摘Convergence of modified truncated Euler-Maruyama(MTEM)method for stochastic differential equations(SDEs)with(1/2+α)-Holder continuous diffusion coefficients are investigated in this paper.We prove that the MTEM method for SDE converges to the exact solution in L9 sense under given conditions.Two examples are provided to support our conclusions.
基金The authors would like to thank Professor Chenggui Yuan (Swansea University, UK) for useful suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11601025)the Beijing Municipal Natural Science Foundation (1192013).
文摘The p-th moment and almos t sure st ability with general decay rate of the exact solutions of neutral stochastic differential delayed equations with Markov switching are investigated under given conditions. Two examples are provided to support the conclusions.
基金Supported by Beijing Municipal Natural Science Foundation(1192013).
文摘We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper.Strong convergence rate(at fixed point)of the corresponding Euler-Maruyama method is obtained when coefficients f and g both satisfy local Lipschitz and linear growth conditions.An example is provided to interpret our conclusions.Our result generalizes and improves the conclusion in[J.Gao,H.Liang,S.Ma,Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay,Appl.Math.Comput.,348(2019)385-398.]
文摘We study the large deviation principle of stochastic differential equations with non-Lipschitzian and non-homogeneous coefficients. We consider at first the large deviation principle when the coefficients σ and b are bounded, then we generalize the conclusion to unbounded case by using bounded approximation program. Our results are generalization of S. Fang-T. Zhang's results.