期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Molten salt synthesis of porous carbon and its application in supercapacitors: A review 被引量:7
1
作者 Zhongya Pang guangshi li +4 位作者 Xiaolu Xiong li Ji Qian Xu Xingli Zou Xionggang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期622-640,I0016,共20页
Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have b... Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have been devoted to the development of novel synthesis strategy for the preparation of porous carbon materials in recent years.In particular,molten salt strategy represents an emerging and promising method,whereby it has shown great potential in achieving tailored production of porous carbon.It has been proved that the molten salt-assisted production of carbon via the direct carbonization of carbonaceous precursors is an effective approach.Furthermore,with the incorporation of electrochemical technology,molten salt synthesis of porous carbon has become flexible and diversiform.Here,this review focuses on the mainstream molten salt synthesis strategies for the production of porous carbon materials,which includes direct molten salt carbonization process,capture and electrochemical conversion of CO_(2)to value-added carbon,electrochemical exfoliation of graphite to graphene-based materials,and electrochemical etching of carbides to new-type carbide-derived carbon materials.The reaction mechanisms and recent advances for these strategies are reviewed and discussed systematically.The morphological and structural properties and capacitive performances of the obtained carbon materials are summarized to reveal their appealing points for supercapacitor applications.Moreover,the opportunities and challenges of the molten salt synthesis strategy for the preparation of carbon materials are also discussed in this review to provide inspiration to the future researches. 展开更多
关键词 Molten salt synthesis Porous carbon CO_(2)conversion GRAPHENE Carbide-derived carbon
下载PDF
Oxygen permeability and CO_2-tolerance of Ce_(0.8)Gd_(0.2)O_(2-δ)-Ln BaCo_2O_(5+δ) dual-phase membranes 被引量:3
2
作者 Longfei Luo Hongwei Cheng +2 位作者 guangshi li Xionggang Lu Bo Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期15-22,共8页
A series of oxygen permeable dual-phase composite oxides 60 wt% Ce0.8Gd0.2O2-δ-40 wt% LnBaCo2O5+δ (CGO-LBCO, Ln = La, Pr, Nd, Sin, Gd and Y) were synthesized through a sol-gel route and effects of the Ln3+ catio... A series of oxygen permeable dual-phase composite oxides 60 wt% Ce0.8Gd0.2O2-δ-40 wt% LnBaCo2O5+δ (CGO-LBCO, Ln = La, Pr, Nd, Sin, Gd and Y) were synthesized through a sol-gel route and effects of the Ln3+ cations on their phase structure, oxygen permeability and chemical stability against CO2 were investigated systemically by XRD, SEM, TG-DSC and oxygen permeation experiments. XRD patterns reveal that the larger Ln3+ cations (La3+, Pr3+ and Nd3+) successfully stabilized the double-layered perovskite structure of sintered LBCO, while the smaller ones (Sm3+, Gd3+, and Y3+) resulted in the partial decomposition of LBCO with some impurities formed. CGO-PBCO yields the highest oxygen permeation flux, reaching 2.8× 10^-7 mol.s-1.cm-2 at 925 ℃ with 1 mm thickness under air/He gradient. The TG-DSC profiles in 20 mol% CO2/N2 and oxygen permeability experiments with CO2 as sweep gas show that CGO-YBCO demonstrates the best chemical stability against CO2, possibly due to its minimum basicity. The stable oxygen permeation flux of CGO-YBCO under CO2 atmosphere reveals its potential application in the oxy-fuel combustion route for CO2 capture. 展开更多
关键词 oxygen permeability dual-phase membrane FLUORITE double-layered perovskite chemical stability C02 capture
下载PDF
Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission
3
作者 Feng Tian Zhongya Pang +10 位作者 Shen Hu Xueqiang Zhang Fei Wang Wei Nie Xuewen Xia guangshi li Hsien-Yi Hsu Qian Xu Xingli Zou li Ji Xionggang Lu 《Research》 SCIE EI CSCD 2024年第1期209-236,共28页
Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities.Electrochemistry,considered a promising strategy,has been explored to... Sustainable and low-carbon-emission silicon production is currently one of the main focuses for the metallurgical and materials science communities.Electrochemistry,considered a promising strategy,has been explored to produce silicon due to prominent advantages:(a)high electricity utilization efficiency;(b)low-cost silica as a raw material;and(c)tunable morphologies and structures,including films,nanowires,and nanotubes.This review begins with a summary of early research on the extraction of silicon by electrochemistry.Emphasis has been placed on the electro-deoxidation and dissolution–electrodeposition of silica in chloride molten salts since the 21st century,including the basic reaction mechanisms,the fabrication of photoactive Si films for solar cells,the design and production of nanoSi and various silicon components for energy conversion,as well as storage applications.Besides,the feasibility of silicon electrodeposition in room-temperature ionic liquids and its unique opportunities are evaluated.On this basis,the challenges and future research directions for silicon electrochemical production strategies are proposed and discussed,which are essential to achieve large-scale sustainable production of silicon by electrochemistry. 展开更多
关键词 DIRECTIONS ELECTRODEPOSITION ELECTRICITY
原文传递
An integrated strategy towards the facile synthesis of core-shell SiC-derived carbon@N-doped carbon for high-performance supercapacitors 被引量:3
4
作者 Zhongya Pang guangshi li +7 位作者 Xingli Zou Chenteng Sun Conghui Hu Wei Tang li Ji Hsien-Yi Hsu Qian Xu Xionggang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期512-521,共10页
Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-deri... Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-derived carbon(CDC)encapsulated with porous N-doped carbon(CDC@NC)towards highperformance supercapacitors.Polydopamine(PDA)as nitrogen and carbon sources was simply coated on SiC nanospheres to form SiC@PDA,which was then directly transformed into CDC@NC via a onestep molten salt electro-etching/in-situ doping process.The synthesized CDC@NC with hierarchically porous structure has a high specific surface area of 1191 m^(2) g^(-1).The CDC core and NC shell are typical amorphous carbon and more ordered N-doped carbon,respectively.Benefitting from its unique dual porous structures,the CDC@NC demonstrates high specific capacitances of 255 and 193 F g^(-1) at 0.5 and20 A g^(-1),respectively.The reaction mechanism of the electro-etching/in-situ doping process has also been investigated through experimental characterizations and theoretical density functional theory calculations.It is suggested that the molten salt electro-etching/in-situ doping strategy is promising for the synthesis of active core-shell porous carbon materials with synergistic properties for supercapacitors without the need for additional doping/activation processes. 展开更多
关键词 Molten salt Electrochemical etching Core-shell structure Porous carbon In-situ nitrogen doping SUPERCAPACITORS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部