期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Erosion effects on soil microbial carbon use efficiency in the mollisol cropland in northeast China
1
作者 Xuebing Zhang guangting pei +3 位作者 Tianyu Zhang Xianlei Fan Ziping Liu Edith Bai 《Soil Ecology Letters》 CSCD 2023年第4期51-63,共13页
●Soil erosion decreased soil microbial CUE and increased microbial uptake of carbon.●Soil erosion decreased microbial CUE by decreasing substrate C,N and MBC and increasing soil pH.●Soil microbes had to increase th... ●Soil erosion decreased soil microbial CUE and increased microbial uptake of carbon.●Soil erosion decreased microbial CUE by decreasing substrate C,N and MBC and increasing soil pH.●Soil microbes had to increase their uptake rate to cope with the loss of substrates with increasing erosion rate.●Soil microbial respiration increased with increasing degree of erosion.●Soil microbial growth rate remained relative stable under different degrees of soil erosion.●Microbial CUE in soil surface was less responsive to erosion than that in deeper soil.Soil microbial carbon use efficiency(CUE)is an important synthetic parameter of microbial community metabolism and is commonly used to quantify the partitioning of carbon(C)between microbial growth and respiration.However,it remains unclear how microbial CUE responds to different degrees of soil erosion in mollisol cropland.Therefore,we investigated the responses of soil erosion on microbial CUE,growth and respiration to different soil erosion rates in a mollisol cropland in northeast China based on a substrate independent method(18O-H2O labeling).Soils were sampled at four positions along a down-slope transect:summit,shoulder,back and foot.We found microbial CUE decreased significantly with increasing soil erosion rate in 5−20 cm soil,but did not change in 0−5 cm.The decrease of microbial CUE in subsoil was because microbes increased C uptake and allocated higher uptake C to microbial basal respiration with increasing soil erosion rate.Microbial respiration increased significantly with soil erosion rate,probably due to the more disturbance and unbalanced stoichiometry.Furthermore,soil microbes in surface soil were able to maintain their growth rates with increasing degree of erosion.Altogether,our results indicated that soil erosion could decrease microbial CUE by affecting soil physical and chemical properties,resulting in more decomposition of soil organic matter and more soil respiration,which had negative feedbacks to soil C sequestration and climate changes in cropland soil. 展开更多
关键词 soil organic carbon soil erosion microbial carbon use efficiency growth rate RESPIRATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部