期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Boosting Capacitive Deionization Performance of Commercial Carbon Fibers Cloth via Structural Regulation Based on Catalytic-Etching Effect 被引量:1
1
作者 Chunjie Zhang Dong Wang +5 位作者 Zhen Wang Guangshuai Zhang Zhichao Liu Jie Wu Jin Hu guangwu wen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期242-252,共11页
Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconduct... Monolithic carbon electrodes with robust mechanical integrity and porous architecture are highly desired for capacitive deionization but remain challenging.Owing to the excellent mechanical strength and electroconductivity,commercial carbon fibers cloth demonstrates great potential as high-performance electrodes for ions storage.Despite this,its direct application on capacitive deionization is rarely reported in terms of limited pore structure and natural hydrophobicity.Herein,a powerful metal-organic framework-engaged structural regulation strategy is developed to boost the desalination properties of carbon fibers.The obtained porous carbon fibers features hierarchical porous structure and hydrophilic surface providing abundant ions-accessible sites,and continuous graphitized carbon core ensuring rapid electrons transport.The catalytic-etching mechanism involving oxidation of Co and subsequent carbonthermal reduction is proposed and highly relies on annealing temperature and holding time.When directly evaluated as a current collector-free capacitive deionization electrode,the porous carbon fibers demonstrates much superior desalination capability than pristine carbon fibers,and remarkable cyclic stability up to 20 h with negligible degeneration.Particularly,the PCF-1000 showcases the highest areal salt adsorption capacity of 0.037 mg cm^(−2) among carbon microfibers.Moreover,monolithic porous carbon fibers-carbon nanotubes with increased active sites and good structural integrity by in-situ growth of carbon nanotubes are further fabricated to enhance the desalination performance(0.051 mg cm^(−2)).This work demonstrates the great potential of carbon fibers in constructing high-efficient and robust monolithic electrode for capacitive deionization. 展开更多
关键词 capacitive deionization carbon fibers cloth catalytic-etching monolithic electrodes
下载PDF
Integration of pore structure modulation and B,N co-doping for enhanced capacitance deionization of biomass-derived carbon
2
作者 Yao Qiu Chunjie Zhang +7 位作者 Rui Zhang Zhiyuan Liu Huazeng Yang Shuai Qi Yongzhao Hou guangwu wen Jilei Liu Dong Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1488-1500,共13页
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ... Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode. 展开更多
关键词 Capacitive deionization Biomass-derived carbon Pore structure B N co-doping Desalination performance
下载PDF
High-yield production of non-layered 2D carbon complexes:Thickness manipulation and carbon nanotube branches for enhanced lithium storage properties
3
作者 Dong Wang Shuai Qi +8 位作者 Yao Qiu Rui Zhang Qiang Zhang Shulong Liu Chunjie Zhang Ziyao Chen Hong Pan Jun Cao guangwu wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期19-29,I0002,共12页
Non-layered two-dimensional(2 D)carbon complexes manifest great potential in energy-related applications owing to their exotic electronic structures,large electrochemically active surface,and intriguing synergistic ef... Non-layered two-dimensional(2 D)carbon complexes manifest great potential in energy-related applications owing to their exotic electronic structures,large electrochemically active surface,and intriguing synergistic effects.However,reliable method for mass production and thickness manipulation of 2 D carbon complexes remains great challenges.Here,inspired by blowing chewing gum into bubbles,a“tailored gel expanding"strategy is proposed for high-yield synthesis of non-layered 2 D carbon complexes with tailored thickness from~12 nm to~1 lm,by controllable pyrolysis of metal-polymeric gel with adequate crosslinking degree.The key feature for thickness manipulation is introducing NH4 NO3 in sol-gel process,which tailors the expansion behavior of gel precursor during subsequent pyrolysis.Various of 2 D sheets with intimately coupled N,O-doped carbon(NOC)and Ni Co-based(Ni Co,(Ni Co)S_(2),(Ni Co)Se_(2),Ni Co_(2)O_(4),(Ni Co)(PO_(3))_(2))nanocrystals are obtained on a large scale and without any impurities.Moreover,these 2 D products are branched with in-situ grown CNTs on the surface,accelerating electrons transfer and preventing the nanosheets from stacking.As a demonstration,the 2 D(Ni Co)S_(2)/NOC with optimized thickness manifests excellent lithium storage properties in both half and full cells.This method paves a new path for massive and controlled production of non-layered 2 D materials with tailored thickness and robust structure stability for energy-related applications. 展开更多
关键词 Two-dimensional materials Non-layered structures Thickness manipulation Carbon nanotubes Lithium-ion batteries
下载PDF
Cobalt phosphide-based composites as anodes for lithium-ion batteries:From mechanism,preparation to performance
4
作者 Bo Lan Yishan Wang +5 位作者 Jialei Lu Dongdong Liu Chuncheng Wei Xueqian Zhang Xiaoxiao Huang guangwu wen 《Particuology》 SCIE EI CAS CSCD 2024年第5期11-31,共21页
With the further requirements of electronic products and powered vehicles,the development of a new generation with low-voltage and high-capacity anode materials is crucial for lithium-ion batteries(LIBs).Transition me... With the further requirements of electronic products and powered vehicles,the development of a new generation with low-voltage and high-capacity anode materials is crucial for lithium-ion batteries(LIBs).Transition metal phosphides,especially cobalt phosphide(CoP)composites,have become a research hotspot for LIBs anode materials in recent years due to their high theoretical specific capacity,low polarization,and suitable voltage plateau.This review first systematically discusses the lithium storage mechanism and preparation methods of CoP in current research.Subsequently,the applications of CoP anode materials in LIBs are categorically reviewed,including the composites of CoP with various types of carbon materials and heterostructures.Finally,the challenges and future development directions of CoP anode materials are summarized to provide guidance for further improving the lithium storage performance of CoP and its practical applications. 展开更多
关键词 COP COMPOSITES PREPARATION Anodes Lithium-ion batteries
原文传递
3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries
5
作者 Jie Fu Dong Wang +7 位作者 Yan Li Xianzheng Liu Rui Zhang Zhiyuan Liu Pengdong Liu Lijuan Zhang Xuefei Li guangwu wen 《Nano Research》 SCIE EI CSCD 2024年第4期2693-2703,共11页
Nanostructured silicon anodes have shown extraordinary lithium storage properties for lithium-ion batteries(LIBs)but are usually achieved at low areal loadings(<1.5 mg·cm^(-2))with low areal capacity.Sustainin... Nanostructured silicon anodes have shown extraordinary lithium storage properties for lithium-ion batteries(LIBs)but are usually achieved at low areal loadings(<1.5 mg·cm^(-2))with low areal capacity.Sustaining sound electrochemical performance at high loading requires proportionally higher ion/electron currents and robust structural stability in the thicker electrode.Herein,we report a three-dimensional(3D)printed silicon-graphene-carbon nanotube(3D-Si/G/C)electrode for simultaneously achieving ultrahigh areal/gravimetric capacities at high mass loading.The periodically arranged vertical channels and hierarchically porous filaments facilitate sufficient electrolyte infiltration and rapid ion diffusion,and the carbonaceous network provides excellent electron transport properties and mechanical integrity,thus endowing the printed 3D-Si/G/C electrode with fast electrochemical reaction kinetics and reversibility at high mass loading.Consequently,the 3D-Si/G/C with high areal mass loading of 12.9 mg·cm^(-2) exhibits excellent areal capacity of 12.8 mAh·cm^(-2) and specific capacity of 1007 mAh·g^(-1),respectively.In-situ optical microscope and ex-situ scanning electron microscope(SEM)confirm that the hierarchically porous filaments with interconnected carbon skeletons effectively suppress the volume change of silicon and maintain stable micro-lattice architecture.A 3D printed 3D-Si/G/C-1||3D-LiFePO_(4)/G full cell holds excellent cyclic stability(capacity retention rate of 78%after 50 cycles)with an initial Coulombic efficiency(ICE)of 96%.This work validates the feasibility of 3D printing on constructing high mass loading silicon anode for practical high energy-density LIBs. 展开更多
关键词 silicon anode areal capacity three-dimensional(3D)printing lithium-ion batteries
原文传递
Effect of boron doping on waterproof and dielectric properties of polyborosiloxane coating on SiO2f/SiO2 composites 被引量:5
6
作者 Long XIA Siru LU +7 位作者 Bo ZHONG Longnan HUANG Hua YANG Tao ZHANG Haibo HAN Pan WANG Li XIONG guangwu wen 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第8期2017-2027,共11页
A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among b... A hydrophobic coating of the silica fiber reinforced silica composites(SiO2f/SiO2) was synthesized by sol-gel method using methyltriethoxy-silane(MTES) and boric acid(B(OH)3) as raw materials. The relationship among boron doping, chemical structure of precursors and durability of hydrophobic coatings was discussed. The Si-O-B and methyl groups were successfully introduced in the gel precursors according to the FT-IR and XPS results. The resins were filled in the internal and surface holes of the SiO2f/SiO2 composites partially or completely, which is beneficial to reduce the physical adsorption of the moisture. In addition, hydroxyl groups of the SiO2f/SiO2 composites reacted with the resins and hydrophobic methyl groups were introduced, leading to the reduction of the chemical adsorption of water. Also, the boron doping was beneficial to enhancing the physical cross-linking between the coating and the SiO2f/SiO2 composites, and improved the adhesion of the coating to the substrate. The results show that the optimal hydrophobic coating with contact angle 130.33°, moisture absorption 0.33% and adhesion level 1 is obtained when the molar ratio of MTES to B(OH)3 is 10:4. The real permittivity of M10B4 is constant in the range of 2.32–2.51 and the dielectric tangent loss is constant in the range of 5.5 × 10-4–8.7 × 10-3. The hydrophobic coating has excellent dielectric properties. 展开更多
关键词 ADHESION DIELECTRIC HYDROPHOBIC Polyborosiloxane SiO2f/SiO2 COMPOSITES
原文传递
Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors 被引量:2
7
作者 Min Zhang Jun Cao +7 位作者 Yi Wang Jia Song Tianci Jiang Yanyu Zhang Weimeng Si Xiaowei Li Bo Meng guangwu wen 《Nano Research》 SCIE EI CAS CSCD 2021年第3期699-706,共8页
High conductivity two-dimensional(2D)materials have been proved to be potential electrode materials for flexible supercapacitors because of its outstanding chemical and physical properties.However,electrodes based on ... High conductivity two-dimensional(2D)materials have been proved to be potential electrode materials for flexible supercapacitors because of its outstanding chemical and physical properties.However,electrodes based on 2D materials always suffer from limited electrolyte-accessible surface due to the restacking of the 2D sheets,hindering the full utilization of their surface area.In this regard,an electrolyte-mediated method is used to integrate dense structure reduced graphene oxide/MXene(RGM)-electrolyte composite films.In such composite films,reduced graphene oxide(RGO)and MXene sheets are controllable assembly in compact layered structure with electrolyte filled between the layers.The electrolyte layer between RGO and MXene sheets forms continuous ion transport channels in the composite films.Therefore,the RGM-electrolyte composite films can be used directly as self-supporting electrodes for supercapacitors without additional conductive agents and binders.As a result,the composite films demonstrate enhanced volumetric specific capacity,improved volumetric energy density and higher power density compared with both pure RGO electrode and porous composite electrode prepared by traditional methods.Specifically,when the mass ratio of MXene is 30%,the electrode delivers a volumetric specific capacity of 454.9 F·cm^(−3) with a high energy density of 39.4 Wh·L^(−1).More importantly,supercapacitors based on the composite films exhibit good flexibility electrochemical performance.The investigation provides a new approach to synthesize dense structure films based on 2D materials for application in high volumetric capacitance flexible supercapacitors. 展开更多
关键词 electrolyte-mediated dense structure continuous ion transport channels composite film flexible supercapacitors high energy density
原文传递
Pomegranate micro/nano hierarchical plasma structure for superior microwave absorption 被引量:1
8
作者 Chunyan Ding Tao Wu +6 位作者 Xinsen Hu Chengshuai Shao Zhipeng Xu Hui Fu Songsong Wu guangwu wen Xiaoxiao Huang 《Nano Research》 SCIE EI CSCD 2022年第10期8688-8696,共9页
Inspired by the pomegranate natural artful structure,pomegranate micro/nano hierarchical plasma configuration of Fe/Fe3C@graphitized carbon(FFC/pCL)was constructed based on the green sol-gel method and in-situ chemica... Inspired by the pomegranate natural artful structure,pomegranate micro/nano hierarchical plasma configuration of Fe/Fe3C@graphitized carbon(FFC/pCL)was constructed based on the green sol-gel method and in-situ chemical vapor deposition(CVD)synthesis protocol.Pomegranate-like FFC/pCL successfully overcame the agglomeration phenomenon of magnetic nanoparticles with each seed of the pomegranate consisting of Fe/Fe_(3)C as cores and graphitized carbon layers as shells.The high-density arrangement of magnetic nanoparticles and the design of pomegranate-like heterostructures lead to enhanced plasmon resonance.Thus,the pomegranate-like FFC/pCL achieved a great electromagnetic wave(EMW)absorbing performance of 6.12 GHz wide band absorption at a low mass adding of only 16.7 wt.%.Such excellent EMW performance can be attributed to its unique pomegranate hierarchical plasma configuration with separated nanoscale iron cores,surface porous texture,and good carbon conductive network.This investigation provides a new paradigm for the development of magnetic/carbon based EMW absorbing materials by taking advantage of pomegranate hierarchical plasma configuration. 展开更多
关键词 electromagnetic wave absorption low filler loading carbon shell network structure magnetic Fe/Fe3C
原文传递
Friction and wear behavior of carbon fiber reinforced lithium aluminosilicate composites sliding against GCr15 steel 被引量:1
9
作者 Haibao MA Xin WU +8 位作者 Long XIA Longnan HUANG Li XIONG Hua YANG Bo ZHONG Tao ZHANG Zhiwei YANG Feng GAO guangwu wen 《Friction》 SCIE CSCD 2020年第6期1063-1072,共10页
Carbon fibers reinforced lithium aluminosilicate matrix composites(Cf/LAS)were prepared by slurry infiltration combined with a hot press procedure.The friction,wear behavior,and wear mechanisms of Cf/LAS composites un... Carbon fibers reinforced lithium aluminosilicate matrix composites(Cf/LAS)were prepared by slurry infiltration combined with a hot press procedure.The friction,wear behavior,and wear mechanisms of Cf/LAS composites under dry sliding conditions were investigated.The results show that the coefficient of friction(COF)initially increased with the increase in carbon fiber content,and reached the maximum value of 0.20 for the 33%Cf/LAS composite.The COF increased sharply with increasing sample temperature from RT to 300℃.The COF remained stable in the temperature range of 300–500℃.The two wear mechanisms of LAS glass-ceramics are fatigue wear and abrasive wear.The Cf/LAS composites demonstrate slight spalling and shallow scratches.These results show that carbon fibers improve the mechanical properties and wear resistance of Cf/LAS composites. 展开更多
关键词 unlubricated friction ceramics composites carbon fiber materials long fibers wear mechanisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部