期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Insight into the microstructural evolution of anthracite during carbonization-graphitization process from the perspective of materialization 被引量:2
1
作者 Huihui Zeng Baolin Xing +7 位作者 Yijun Cao Bing Xu Lei Hou Hui Guo Song Cheng guangxu huang Chuanxiang Zhang Qi Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1397-1406,共10页
Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstr... Materialization of coal is one of effective and clean pathways for its utilization. The microstructures of coal-based carbon materials have an important influence on their functional applications. Herein, the microstructural evolution of anthracite in the temperature range of 1000–2800 ℃ was systematically investigated to provide a guidance for the microstructural regulation of coal-based carbon materials.The results indicate that the microstructure of anthracite undergoes an important change during carbonization-graphitization process. As the temperature increases, aromatic layers in anthracite gradually transform into disordered graphite microcrystals and further grow into ordered graphite microcrystals, and then ordered graphite microcrystals are laterally linked to form pseudo-graphite phase and eventually transformed into highly ordered graphite-like sheets. In particular, 2000–2200 ℃ is a critical temperature region for the qualitative change of ordered graphite crystallites to pseudo-graphite phase,in which the relevant structural parameters including stacking height, crystallite lateral size and graphitization degree show a rapid increase. Moreover, both aromaticity and graphitization degree have a linear positive correlation with carbonization-graphitization temperature in a specific temperature range.Besides, after initial carbonization, some defect structures in anthracite such as aliphatic carbon and oxygen-containing functional groups are released in the form of gaseous low-molecular volatiles along with an increased pore structure, and the intermediates derived from minerals could facilitate the conversion of sp^(3) amorphous carbon to sp^(2) graphitic carbon. This work provides a valuable reference for the rational design of microstructure of coal-based carbon materials. 展开更多
关键词 ANTHRACITE Microstructural evolution Carbonization-graphitization Graphite microcrystals MATERIALIZATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部