期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A lattice Boltzmann exploration of two-phase displacement in 2D porous media under various pressure boundary conditions 被引量:1
1
作者 guanxi yan Zi Li +3 位作者 Thierry Bore Sergio Andres Galindo Torres Alexander Scheuermann Ling Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1782-1798,共17页
While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct ... While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions. 展开更多
关键词 Two-phase flow Porous media Dynamic effects Multistep in/outflow Capillary pressure Interfacial area Flow regimes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部