The complexity of the tumor microenvironment(TME)severely hinders the therapeutic effects of various cancer treatment modalities.The TME differs from normal tissues owing to the presence of hypoxia,lowpH,and immunesup...The complexity of the tumor microenvironment(TME)severely hinders the therapeutic effects of various cancer treatment modalities.The TME differs from normal tissues owing to the presence of hypoxia,lowpH,and immunesuppressive characteristics.Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors.Recently,polymeric nanomedicines have been widely used in cancer therapy,because their synthesis can be controlled and they are highly modifiable,and have demonstrated great potential to remodel the TME.In this review,we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME,aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.展开更多
Systematic administration of small molecular drugs often suffered from the low efficacy and systemic toxicity in cancer therapy.In addition,application of single mode drug usually leads to unsatisfactory therapeutic o...Systematic administration of small molecular drugs often suffered from the low efficacy and systemic toxicity in cancer therapy.In addition,application of single mode drug usually leads to unsatisfactory therapeutic out-comes.Currently,developing multimodal-drug combination strategy that acts on different pathways without increasing side effects remains great challenge.Here,we developed a hydrogel system that co-delivered glycolysis inhibitor apigenin and chemo-drug gemcitabine to realize combination strategy for combating can-cer with minimal systemic toxicity.We demonstrated that this system can not only eliminate tumor cells in situ,but also induce abscopal effect on various tumor models.These results showed that our study provided a safe and effective strategy for clinical cancer treatment.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51988102,51833010,and 52273114)the Fundamental Research Funds for the Central Universities(No.PKU2022 XGK008).
文摘The complexity of the tumor microenvironment(TME)severely hinders the therapeutic effects of various cancer treatment modalities.The TME differs from normal tissues owing to the presence of hypoxia,lowpH,and immunesuppressive characteristics.Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors.Recently,polymeric nanomedicines have been widely used in cancer therapy,because their synthesis can be controlled and they are highly modifiable,and have demonstrated great potential to remodel the TME.In this review,we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME,aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
基金supported by the National Natural Science Foundation of China(62175198,52273114,82103323,82003992,and U22A2092)the Fundamental Research Funds for the Central Universities(xtr062022002)+1 种基金Key Research and Development Program of Shaanxi Province under Grant No.2022ZDLSF04-09Beijing Natural Science Foundation(7222214).
文摘Systematic administration of small molecular drugs often suffered from the low efficacy and systemic toxicity in cancer therapy.In addition,application of single mode drug usually leads to unsatisfactory therapeutic out-comes.Currently,developing multimodal-drug combination strategy that acts on different pathways without increasing side effects remains great challenge.Here,we developed a hydrogel system that co-delivered glycolysis inhibitor apigenin and chemo-drug gemcitabine to realize combination strategy for combating can-cer with minimal systemic toxicity.We demonstrated that this system can not only eliminate tumor cells in situ,but also induce abscopal effect on various tumor models.These results showed that our study provided a safe and effective strategy for clinical cancer treatment.