期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Visualizing Complex Anatomical Structure in Bamboo Nodes Based on X-ray Microtomography
1
作者 Elin Xiang Shumin Yang +6 位作者 Chunjie Cao Xinge Liu guanyun peng Lili Shang Genlin Tian Qianli Ma Jianfeng Ma 《Journal of Renewable Materials》 SCIE EI 2021年第9期1531-1540,共10页
In recent years,bamboo has been widely used in a broad range of applications,a thorough understanding of the structural characteristics of bamboo nodes is essential for better processing and manufacturing of biomimeti... In recent years,bamboo has been widely used in a broad range of applications,a thorough understanding of the structural characteristics of bamboo nodes is essential for better processing and manufacturing of biomimetic materials.This study investigated the complex anatomical structure for the nodes of two bamboo species,Indocalamus latifolius(Keng)McClure and Shibataea chinensis Nakai,using a high-resolution X-ray microtomography(μCT).The results show that the vascular bundle system in the nodal region of I.latifolius and S.chinensis is a net-like structure composed of horizontal and axial vascular bundles.Furthermore,the fiber sheath surrounding metaxylem vessels tended to be shorter in the tangential direction.This structure of bamboo nodes facilitates the tangential and axial transport of moisture and nutrients.The anatomical structure of I.latifolius and S.chinensis nodes has obvious differences,especially in the arrangement of vascular bundles.Vascular bundle frequency was significantly higher in S.chinensis nodes than in I.latifolius nodes.These findings indicate thatμCT is a nondestructive three-dimensional imaging method that can used to examine the anatomical structure of bamboo nodes. 展开更多
关键词 Anatomical structure bamboo nodes I.latifolius S.chinensis X-ray microtomography(μCT)
下载PDF
Redefinition to bilayer osmotic pump tablets as subterranean river system within mini-earth via three-dimensional structure mechanism 被引量:1
2
作者 Abi Maharjan Hongyu Sun +11 位作者 Zeying Cao Ke Li Jinping Liu Jun Liu Tiqiao Xiao guanyun peng Junqiu Ji Peter York Balmukunda Regmi Xianzhen Yin Jiwen Zhang Li Wu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第5期2568-2577,共10页
Defining and visualizing the three-dimensional(3 D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanis... Defining and visualizing the three-dimensional(3 D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3 D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography(SR-μCT). In situ formed 3 D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3 D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral“roadways”. Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed3 D microstructures, a “subterranean river model” for the drug release mechanism has been defined to explain the drug release mechanism. 展开更多
关键词 Bilayer osmotic pump tablet Synchrotron radiation micro-computed tomography Three-dimensional microstructure Release kinetics Void formation Peripheral“roadways” Push-pull model Subterranean river model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部