In the mitochondria and chloroplasts of flowering plants (angiosperms), transcripts of protein-coding genes are altered after synthesis so that their final primary nucleotide sequence differs from that of the correspo...In the mitochondria and chloroplasts of flowering plants (angiosperms), transcripts of protein-coding genes are altered after synthesis so that their final primary nucleotide sequence differs from that of the corresponding DNA sequence. This posttranscriptional mRNA editing consists almost exclusively of C-to-U substitutions (direct) and less frequently of U-to-C substitution (reverse). Editing occurs predominantly within coding regions, mostly at isolated C residues, and usually at first or second positions of codons, thereby almost always changing the amino acid from that specified by the unedited codon. Editing may also create initiation and termination codons. The effect of C-to-U RNA editing in plants is to make proteins encoded by plant organelles more similar in sequence to their non plant homologs, then specific C-to- U editing events are essential for the production of functional plant mitochondrial proteins. Our attention has been devoted to the study of the mRNA editing in cox3 mitochondrial gene of fern Asplenium nidus. This study reveals the extreme importance of both C-to-U and U-to-C substitutions for protein expression.展开更多
文摘In the mitochondria and chloroplasts of flowering plants (angiosperms), transcripts of protein-coding genes are altered after synthesis so that their final primary nucleotide sequence differs from that of the corresponding DNA sequence. This posttranscriptional mRNA editing consists almost exclusively of C-to-U substitutions (direct) and less frequently of U-to-C substitution (reverse). Editing occurs predominantly within coding regions, mostly at isolated C residues, and usually at first or second positions of codons, thereby almost always changing the amino acid from that specified by the unedited codon. Editing may also create initiation and termination codons. The effect of C-to-U RNA editing in plants is to make proteins encoded by plant organelles more similar in sequence to their non plant homologs, then specific C-to- U editing events are essential for the production of functional plant mitochondrial proteins. Our attention has been devoted to the study of the mRNA editing in cox3 mitochondrial gene of fern Asplenium nidus. This study reveals the extreme importance of both C-to-U and U-to-C substitutions for protein expression.