Hydrate-based CO_(2) sequestration is an effective method for reducing the greenhouse effect,and the presence of porous media and NaCl can impact the formation characteristics of hydrates.This study uses the constant ...Hydrate-based CO_(2) sequestration is an effective method for reducing the greenhouse effect,and the presence of porous media and NaCl can impact the formation characteristics of hydrates.This study uses the constant volume temperature search method to investigate the effects of quartz sand particle size(0.006‒0.03 mm),water saturation(30%–90%),and NaCl concentration(1%‒9%)on the phase equilibrium and kinetics of CO_(2) hydrates within a temperature range of 273‒285 K and pressure range of 1.0‒3.5 MPa.The results indicate that a decrease in quartz sand particle size or an increase in NaCl concentration shifts the hydrate phase equilibrium curve towards lower temperatures and higher pressures,making hydrate generation conditions more demanding.In different particle size systems,there are no significant changes in the rate of CO_(2) hydrate formation or conversion rate.The highest hydrate conversion rate of 71.1%is observed in a 0.015 mm particle size system.With increasing water saturation,both the generation rate and conversion rate of CO_(2) hydrates show a trend of first increasing and then decreasing.Meanwhile,low concentrations of NaCl(1%–3%)are found to enhance the formation and conversion rates of CO_(2) hydrates.However,as NaCl concentration increases,the rate of CO_(2) hydrate formation and conversion rate decrease.展开更多
Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot met...Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot method.”The highly active fluorinated p-trifluoromethylaniline was used as the core raw material,while diethylenetriamine and methyl acrylate were used as the chain segment.A hyperbranched fluorine-containing polyamine-amine demulsifier(NHFPA6)was obtained through nano-grafting copolymerization of HFPA5.To enhance the demulsification and dehydration performance,the copolymerized HFPA6 was modified and combined.Then,the effects of the combination ratio,demulsifier concentration,demulsification time,and demulsification temperature on the demulsification effect were investigated.The results revealed that a combination ratio of DE-401:NHFPA6=1:1,a demulsification temperature of 50℃,a demulsification time of 60 min,and a demulsifier concentration of 150 mg/L yielded a dehydration rate as high as 99.80%.A response surface optimization design of demulsification conditions was performed.The model verified that the optimal demulsification conditions were 50℃,300 mg/L,and 90 min.However,considering the economic benefits of factories,it is more favorable to select demulsification conditions with a shorter time and lower concentration when the dehydration standard is met.Therefore,the demulsification conditions were selected as 50℃,150 mg/L,and 60 min.Compared to existing demulsifiers,the demulsifier developed in this study exhibits a lower demulsification temperature and higher demulsification efficiency.展开更多
基金the National Natural Science Foundation of China(NSFC 21676145)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,China).
文摘Hydrate-based CO_(2) sequestration is an effective method for reducing the greenhouse effect,and the presence of porous media and NaCl can impact the formation characteristics of hydrates.This study uses the constant volume temperature search method to investigate the effects of quartz sand particle size(0.006‒0.03 mm),water saturation(30%–90%),and NaCl concentration(1%‒9%)on the phase equilibrium and kinetics of CO_(2) hydrates within a temperature range of 273‒285 K and pressure range of 1.0‒3.5 MPa.The results indicate that a decrease in quartz sand particle size or an increase in NaCl concentration shifts the hydrate phase equilibrium curve towards lower temperatures and higher pressures,making hydrate generation conditions more demanding.In different particle size systems,there are no significant changes in the rate of CO_(2) hydrate formation or conversion rate.The highest hydrate conversion rate of 71.1%is observed in a 0.015 mm particle size system.With increasing water saturation,both the generation rate and conversion rate of CO_(2) hydrates show a trend of first increasing and then decreasing.Meanwhile,low concentrations of NaCl(1%–3%)are found to enhance the formation and conversion rates of CO_(2) hydrates.However,as NaCl concentration increases,the rate of CO_(2) hydrate formation and conversion rate decrease.
基金supported by National Natural Science Foundation of China(NSFC 21676145)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,China).
文摘Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot method.”The highly active fluorinated p-trifluoromethylaniline was used as the core raw material,while diethylenetriamine and methyl acrylate were used as the chain segment.A hyperbranched fluorine-containing polyamine-amine demulsifier(NHFPA6)was obtained through nano-grafting copolymerization of HFPA5.To enhance the demulsification and dehydration performance,the copolymerized HFPA6 was modified and combined.Then,the effects of the combination ratio,demulsifier concentration,demulsification time,and demulsification temperature on the demulsification effect were investigated.The results revealed that a combination ratio of DE-401:NHFPA6=1:1,a demulsification temperature of 50℃,a demulsification time of 60 min,and a demulsifier concentration of 150 mg/L yielded a dehydration rate as high as 99.80%.A response surface optimization design of demulsification conditions was performed.The model verified that the optimal demulsification conditions were 50℃,300 mg/L,and 90 min.However,considering the economic benefits of factories,it is more favorable to select demulsification conditions with a shorter time and lower concentration when the dehydration standard is met.Therefore,the demulsification conditions were selected as 50℃,150 mg/L,and 60 min.Compared to existing demulsifiers,the demulsifier developed in this study exhibits a lower demulsification temperature and higher demulsification efficiency.