Cryptochromes (CRYs) are blue and UV light photoreceptors, known to play key roles in circadian rhythms and in the light-dependent magnetosensitivity of insects. Two novel cryptochrome genes were cloned from the bro...Cryptochromes (CRYs) are blue and UV light photoreceptors, known to play key roles in circadian rhythms and in the light-dependent magnetosensitivity of insects. Two novel cryptochrome genes were cloned from the brown planthopper, and were given the designations of Nlcryl and Nlcry2, with the accession numbers KM108578 and KM108579 in GenBank. The complementary DNA sequences ofNlcryl andNlcry2 are 1935 bp and 2463 bp in length, and they contain an open reading frame of 1629 bp and 1872 bp, encoding amino acids of 542 and 623, with a predicted molecular weight of 62.53 kDa and 70.60 kDa, respectively. Well-conserved motifs such as DNA-photolyase and FAD-binding-7 domains were observed in Nlcry1 and Nlcry2. Phylogenetic analysis demonstrated the proteins of Nlcry1 and Nlcry2 to be clustered into the insect's cryptochrome 1 and cryptochrome 2, respectively. Quantitative polymerase chain reaction showed that the daily oscillations of messenger RNA (mRNA) expression in the head of the brown planthopper were mild for Nlcryl, and modest for Nlcry2. Throughout all developmental stages, Nlcryl and Nlcry2 exhibited extreme fluctuations and distinctive expression profiles. Cryptochrome mRNA expression peaked immediately after adult emergence and then decreased subsequently. The tissue expression profiles of newly emerged brown planthopper adults showed higher expression levels of CRYs in the head than in the thorax or abdomen, as well as significantly higher levels of CRYs in the heads of the macropterous strain than in the heads of the brachypterous strain. Taken together, the results of our study suggest that the two cryptochrome genes characterized in the brown planthopper might be associated with developmental physiology and migration.展开更多
Sometimes, extreme weather is vital for the population survival of migratory insects by causing sudden population collapse or outbreak. Several studies have shown that rice planthopper migration was significantly infl...Sometimes, extreme weather is vital for the population survival of migratory insects by causing sudden population collapse or outbreak. Several studies have shown that rice planthopper migration was significantly influenced by typhoons in eastern Asia. Most typhoons occur in the summer, especially in August. In August, brown planthopper Nilaparvata lugens (Stal) migrates northward or southward depending on wind direc- tion, and thus typhoons can potentially influence its migration process and population distribution. However, this has not yet been studied. This paper reported a case study on the effects of Typhoon Soudelor on the summer migration of N. lugens in eastern China in 2015. The migration pathways of N. lugens were reconstructed for the period under the influence of a typhoon by calculating the trajectories and migration events in eight counties of the Yangtze River Valley region with ancillary information. Trajectory mod- elling showed that most migrants took short distance migrations (less than 200 km) under the influence of the Typhoon Soudelor. Numerous N. lugens migrants were concentrated and deposited at the rear of the typhoon during the last 5 days of Typhoon Soudelor on August 9-13 due to horizontal convergence, and this led to an outbreak population. These results indicated that the N. lugens population was redistributed by the typhoon in the sum- mer and that the population dynamics at the rear of a typhoon should be kept under close surveillance. This study provided insight into migratory organisms adapting to atmospheric features.展开更多
The mechanisms of magnetoreception have been proposed as the magnetitebased, the chemical radical-pair and biocompass model, in which magnetite particles, the cryptochrome (Cry) or iron-sulfur cluster assembly 1 (IscA...The mechanisms of magnetoreception have been proposed as the magnetitebased, the chemical radical-pair and biocompass model, in which magnetite particles, the cryptochrome (Cry) or iron-sulfur cluster assembly 1 (IscA1) may be involved. However, little is known about the association among the molecules. Here we investigated the molecular characterization and the mRNA expression of IscA1 in different developmental stages, tissues and magnetic fields in the migratory brown planthopper (BPH), Nilaparvata lugens. NlIscA1 contains an open reading frame of 390 bp, encoding amino acids of 129, with the predicted molecular weight of 14.0 kDa and the isoelectric point of 9.10. Well-conserved Fe-S cluster binding sites were observed in the predicted protein. Phylogenetic analysis demonstrated NlIscA1 to be clustered into the insect's IscA1. NlIscA1 showed up-regulated mRNA expression during the period of migration. The mRNA expression of NlIscA1 could be detected in all the three tissues of head, thorax and abdomen, with the highest expression level in the abdomen. For the macropterous migratory Nilaparvata lugens, mRNA expression of NlIscA1 and N. lugens cryptochromel (Nlcry1) were up-regulated under the magnetic fields of 5 Gauss and 10 Gauss in strength (vs. local geomagnetic field), while N. lugens cryptochrome 2 (Nlcry2) remained stable. For the brachyterous non-migratory Nilaparvata lugens, no significant changes were found in mRNA expression of NlIscA1, Nlcry1 and Nlcry2 among different magnetic fields. These findings preliminarily reveal that the expression of NlIscA1 and Nlcry1 exhibited coordinated responses to the magnetic field. It suggests some potential associations among the putative magneto-sensitive molecules of cryptochrome and iron-sulfur cluster assembly.展开更多
The geomagnetic field(GMF)is well documented for its essential role as a cue used in animal orientation or navigation.Recent evidence indicates that the absence of GMF(mimicked by the near-zero magnetic field,NZMF)can...The geomagnetic field(GMF)is well documented for its essential role as a cue used in animal orientation or navigation.Recent evidence indicates that the absence of GMF(mimicked by the near-zero magnetic field,NZMF)can trigger stress-like responses such as reduced body weight,as we have previously shown in the brown planthopper,Nilaparvata lugens.In this study,we found that consistent with the significantly decreased body weight of newly emerged female(—14.67%)and male(—13.17%)adult N.lugens,the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02%in 5th instar nymphs reared under the NZMF versus GMF.Interestingly,5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels(+16.98%and+20.05%;24 h and 48 h after molting),which are associated with food aversion,and expression patterns of their appetite-related neuropeptide genes(neuropeptide F,dow regulated overall;short neuropeptide F,dowregulated overall;adipokinetic hormone up-regulated overall;and adipokinetic hormone receptor,down-regulated overall)were also altered under the absence of GMF in a manner consistent with diminishing appetite.Moreover,the expressions of the potential magnetosensor croptochromes(Crys)were found significantly altered under the absence of GMF,indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms.These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation.Our results highlight that GMF could be necessary for the maintenanee of energy homeostasis in insects.展开更多
The geomagnetic field(GMF)is an environmental cue that provides directional information for animals.The intensity of GMF is varied over space and time.Variations in the GMF intensity afect the navigation of animals an...The geomagnetic field(GMF)is an environmental cue that provides directional information for animals.The intensity of GMF is varied over space and time.Variations in the GMF intensity afect the navigation of animals and their physiology.In this study,the phototaxis of the migratory insect rice planthopper Nilaparvata lugens(N.lugens)and frataxin in N.lugens(NI-fh),which is a mitochondrial protein required for cellular iron homeostasis and iron-sulfur cluster assembly,were investigated by using different intensities of magnetic field.From the results,individuals of N.lugens showed decreased phototaxis when reared and tested in a behavioral arena under a strong magnetic field.Besides the reduction in performance,an accompanying ffect of the strong magnetic field condition was a reduced level of Nl-fh-messenger RNA,and a NI-fh knockdown indeed impaired the phototactic behavior in a tested sample of insects.This leads to the conclusion that the expression of frataxin is dependent on the strength of the surrounding magnetic field and that functional frataxin facilitates phototactic behavior in N.lugens.展开更多
基金We thank the staff in the Beijing READ BIO Bioinformatic Technology Company for their assistance in the phylogenetic inference and bioinformatic analysis of brown planthopper CRY proteins. This research was supported by the Key Program of National Natural Science of China (51037006), the National Basic Research Program of China "973" (2010CB126200) and the National Nature Science Foundations of China (31170362, 31272051, 31470454 and 31070755).
文摘Cryptochromes (CRYs) are blue and UV light photoreceptors, known to play key roles in circadian rhythms and in the light-dependent magnetosensitivity of insects. Two novel cryptochrome genes were cloned from the brown planthopper, and were given the designations of Nlcryl and Nlcry2, with the accession numbers KM108578 and KM108579 in GenBank. The complementary DNA sequences ofNlcryl andNlcry2 are 1935 bp and 2463 bp in length, and they contain an open reading frame of 1629 bp and 1872 bp, encoding amino acids of 542 and 623, with a predicted molecular weight of 62.53 kDa and 70.60 kDa, respectively. Well-conserved motifs such as DNA-photolyase and FAD-binding-7 domains were observed in Nlcry1 and Nlcry2. Phylogenetic analysis demonstrated the proteins of Nlcry1 and Nlcry2 to be clustered into the insect's cryptochrome 1 and cryptochrome 2, respectively. Quantitative polymerase chain reaction showed that the daily oscillations of messenger RNA (mRNA) expression in the head of the brown planthopper were mild for Nlcryl, and modest for Nlcry2. Throughout all developmental stages, Nlcryl and Nlcry2 exhibited extreme fluctuations and distinctive expression profiles. Cryptochrome mRNA expression peaked immediately after adult emergence and then decreased subsequently. The tissue expression profiles of newly emerged brown planthopper adults showed higher expression levels of CRYs in the head than in the thorax or abdomen, as well as significantly higher levels of CRYs in the heads of the macropterous strain than in the heads of the brachypterous strain. Taken together, the results of our study suggest that the two cryptochrome genes characterized in the brown planthopper might be associated with developmental physiology and migration.
基金We thank the plant protection stations of Jiangxi, Fujian, Anhui, Jiangsu, Zhejiang, Hunan, Hubei, Guang- dong and Guangxi provinces for providing insect scouting data. This study was supported by the National Natural Science Foundation of China (31471763) and the Fundamental Research Funds for the Central Universities (KJQN201434). GH's visiting scholarship at the University of Exeter was funded by the China Scholarship Council.
文摘Sometimes, extreme weather is vital for the population survival of migratory insects by causing sudden population collapse or outbreak. Several studies have shown that rice planthopper migration was significantly influenced by typhoons in eastern Asia. Most typhoons occur in the summer, especially in August. In August, brown planthopper Nilaparvata lugens (Stal) migrates northward or southward depending on wind direc- tion, and thus typhoons can potentially influence its migration process and population distribution. However, this has not yet been studied. This paper reported a case study on the effects of Typhoon Soudelor on the summer migration of N. lugens in eastern China in 2015. The migration pathways of N. lugens were reconstructed for the period under the influence of a typhoon by calculating the trajectories and migration events in eight counties of the Yangtze River Valley region with ancillary information. Trajectory mod- elling showed that most migrants took short distance migrations (less than 200 km) under the influence of the Typhoon Soudelor. Numerous N. lugens migrants were concentrated and deposited at the rear of the typhoon during the last 5 days of Typhoon Soudelor on August 9-13 due to horizontal convergence, and this led to an outbreak population. These results indicated that the N. lugens population was redistributed by the typhoon in the sum- mer and that the population dynamics at the rear of a typhoon should be kept under close surveillance. This study provided insight into migratory organisms adapting to atmospheric features.
基金the National Natural Science Foundation of China(31670855,31470454 and 31170362)the China Postdoctoral Scienee Foun?dation(2016M590470).
文摘The mechanisms of magnetoreception have been proposed as the magnetitebased, the chemical radical-pair and biocompass model, in which magnetite particles, the cryptochrome (Cry) or iron-sulfur cluster assembly 1 (IscA1) may be involved. However, little is known about the association among the molecules. Here we investigated the molecular characterization and the mRNA expression of IscA1 in different developmental stages, tissues and magnetic fields in the migratory brown planthopper (BPH), Nilaparvata lugens. NlIscA1 contains an open reading frame of 390 bp, encoding amino acids of 129, with the predicted molecular weight of 14.0 kDa and the isoelectric point of 9.10. Well-conserved Fe-S cluster binding sites were observed in the predicted protein. Phylogenetic analysis demonstrated NlIscA1 to be clustered into the insect's IscA1. NlIscA1 showed up-regulated mRNA expression during the period of migration. The mRNA expression of NlIscA1 could be detected in all the three tissues of head, thorax and abdomen, with the highest expression level in the abdomen. For the macropterous migratory Nilaparvata lugens, mRNA expression of NlIscA1 and N. lugens cryptochromel (Nlcry1) were up-regulated under the magnetic fields of 5 Gauss and 10 Gauss in strength (vs. local geomagnetic field), while N. lugens cryptochrome 2 (Nlcry2) remained stable. For the brachyterous non-migratory Nilaparvata lugens, no significant changes were found in mRNA expression of NlIscA1, Nlcry1 and Nlcry2 among different magnetic fields. These findings preliminarily reveal that the expression of NlIscA1 and Nlcry1 exhibited coordinated responses to the magnetic field. It suggests some potential associations among the putative magneto-sensitive molecules of cryptochrome and iron-sulfur cluster assembly.
基金the National Natural Science Foundation of China(31701787,31470454 and 31670855)the Natural Science Foundation of Jiangsu Province(BK20160717 and BK20170026)+3 种基金the Fundame ntal Research Funds for the Central Universi-ties(KJQN201820)the Nanjing Agricultural University Start-up Fund(82162045)the Jiangsu Province Postdoctoral Science Foundation(1601196C)the National Basic Research Program of China(973)(2010CB126200).
文摘The geomagnetic field(GMF)is well documented for its essential role as a cue used in animal orientation or navigation.Recent evidence indicates that the absence of GMF(mimicked by the near-zero magnetic field,NZMF)can trigger stress-like responses such as reduced body weight,as we have previously shown in the brown planthopper,Nilaparvata lugens.In this study,we found that consistent with the significantly decreased body weight of newly emerged female(—14.67%)and male(—13.17%)adult N.lugens,the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02%in 5th instar nymphs reared under the NZMF versus GMF.Interestingly,5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels(+16.98%and+20.05%;24 h and 48 h after molting),which are associated with food aversion,and expression patterns of their appetite-related neuropeptide genes(neuropeptide F,dow regulated overall;short neuropeptide F,dowregulated overall;adipokinetic hormone up-regulated overall;and adipokinetic hormone receptor,down-regulated overall)were also altered under the absence of GMF in a manner consistent with diminishing appetite.Moreover,the expressions of the potential magnetosensor croptochromes(Crys)were found significantly altered under the absence of GMF,indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms.These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation.Our results highlight that GMF could be necessary for the maintenanee of energy homeostasis in insects.
基金We thank Wei Pan for generous assistance in the setup and maintenance of magnetic field equipment of solenoidal coils.This research was supported by the National Nat-ural Science Foundation of China(3167085,31870367,31470454)the Natural Science Foundation of Jiangsu Province Youth Fund(BK20160717)the Natural Sci-ence Foundation ofChina for Young Scholars(31701787).
文摘The geomagnetic field(GMF)is an environmental cue that provides directional information for animals.The intensity of GMF is varied over space and time.Variations in the GMF intensity afect the navigation of animals and their physiology.In this study,the phototaxis of the migratory insect rice planthopper Nilaparvata lugens(N.lugens)and frataxin in N.lugens(NI-fh),which is a mitochondrial protein required for cellular iron homeostasis and iron-sulfur cluster assembly,were investigated by using different intensities of magnetic field.From the results,individuals of N.lugens showed decreased phototaxis when reared and tested in a behavioral arena under a strong magnetic field.Besides the reduction in performance,an accompanying ffect of the strong magnetic field condition was a reduced level of Nl-fh-messenger RNA,and a NI-fh knockdown indeed impaired the phototactic behavior in a tested sample of insects.This leads to the conclusion that the expression of frataxin is dependent on the strength of the surrounding magnetic field and that functional frataxin facilitates phototactic behavior in N.lugens.