期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bioinformatics analysis for structure and function of CPR of Plasmodium falciparum 被引量:3
1
作者 Zhigang Fan lingmin Zhang +4 位作者 Guogang Yan Qiang Wu Xiufeng Gan Saifeng Zhong guifen lin 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2011年第2期85-87,共3页
Objective:To analyse the structure and function of NADPH-cytochrome p450 reductase(CYPOR or CPR) from Plasmodium falciparum(Pf),and to predict its’ drug target and vaccine target. Methods:The structure,function,drug ... Objective:To analyse the structure and function of NADPH-cytochrome p450 reductase(CYPOR or CPR) from Plasmodium falciparum(Pf),and to predict its’ drug target and vaccine target. Methods:The structure,function,drug target and vaccine target of CPR from Plasmodium falciparum were analyzed and predicted by bioinformatics methods.Results:PfCPR,which was older CPR,had close relationship with the CPR from other Plasmodium species,but it was distant from its hosts,such as Homo sapiens and Anopheles.PfCPR was located in the cellular nucleus of Plasmodium falciparum.335aa-352aa and 591aa - 608aa were inserted the interior side of the nuclear membrane,while 151aa-265aa was located in the nucleolus organizer regions.PfCPR had 40 function sites and 44 protein-protein binding sites in amino acid sequence.The teriary structure of laa-700aa was forcep-shaped with wings.15 segments of PfCPR had no homology with Homo sapien CPR and most were exposed on the surface of the protein.These segments had 25 protein-protein binding sites.While 13 other segments all possessed function sites. Conclusions:The evolution or genesis of Plasmodium falciparum is earlier than those of Homo sapiens.PfCPR is a possible resistance site of antimalarial drug and may involve immune evasion, which is associated with parasite of sporozoite in hepatocytes.PfCPR is unsuitable as vaccine target,but it has at least 13 ideal drug targets. 展开更多
关键词 PLASMODIUM FALCIPARUM NADPH-cytochrome p450 reductase Origin Immune EVASION Drug TARGET Vaccine TARGET
下载PDF
Bioinformatics analysis and prediction for structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei 被引量:2
2
作者 Zhigang Fan Gang Lv +5 位作者 lingmin Zhang Xiufeng Gan Qiang Wu Saifeng Zhong Guogang Yan guifen lin 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2011年第1期1-4,共4页
ObjectiveTo search and analyze nitric oxide synthase (NOS) and similar proteins from Plasmodium berghei(Pb).MethodsThe structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei were ... ObjectiveTo search and analyze nitric oxide synthase (NOS) and similar proteins from Plasmodium berghei(Pb).MethodsThe structure and function of nitric oxide synthase and similar proteins from Plasmodium berghei were analyzed and predicted by bioinformatics.ResultsPbNOS were not available, but nicotinamide adenine dinucleotide 2′–phosphate reduced tetrasodium (NADPH)–cytochrome p450 reductase(CPR) were gained. PbCPR was in the nucleus of Plasmodium berghei, while 134aa–229aa domain was localize in nucleolar organizer. The amino acids sequence of PbCPR had the closest genetic relationship with Plasmodium vivax showing a 73% homology. The tertiary structure of PbCPR displayed the forcep–shape with wings, but no wings existed in the tertiary structure of its' host, Mus musculus(Mm). 137aa–200aa, 201aa–218aa, 220aa–230aa, 232aa–248, 269aa–323aa, 478aa–501aa and 592aa–606aa domains of PbCPR showed no homology with MmCPRs', and all domains were exposed on the surface of the protein.ConclusionsNOS can't be found in Plasmodium berghei and other Plasmodium species. PbCPR may be a possible resistance site of antimalarial drug, and the targets of antimalarial drug and vaccine. It may be also one of the mechanisms of immune evasion. This study on Plasmodium berghei may be more suitable to Plasmodium vivax. And 137aa–200aa, 201aa–218aa, 220aa–230aa, 232aa–248, 269aa–323aa, 478aa–501aa and 592aa–606aa domains of PbCPR are more ideal targets of antimalarial drug and vaccine. 展开更多
关键词 Plasmodium berghei Nitric oxide synthase NADPH–cytochrome p450 reductase Drug target
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部