期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synthesis of dual-doped non-precious metal electrocatalysts and their electrocatalytic activity for oxygen reduction reaction
1
作者 Li Xu Guoshun Pan +3 位作者 Xiaolu Liang guihai luo Chunli Zou Gaopan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期498-506,共9页
The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature f... The pyrolyzed carbon supported ferrum polypyrrole (Fe-N/C) catalysts are synthesized with or without selected dopants, p-toluenesulfonic acid (TsOH), by a facile thermal annealing approach at desired temperature for optimizing their activity for the oxygen reduction reaction (ORR) in O2-saturated 0.1 mol/L KOH solution. The electrochemical techniques such as cyclic voltammetry (CV) and rotating disk electrode (RDE) are employed with the Koutecky-Levich theory to quantitatively obtain the ORR kinetic constants and the reaction mechanisms. It is found that catalysts doped with TsOH show significantly improved ORR activity relative to the TsOH-free one. The average electron transfer numbers for the catalyzed ORR are determined to be 3.899 and 3.098, respectively, for the catalysts with and without TsOH-doping. The heat-treatment is found to be a necessary step for catalyst activity improvement, and the catalyst pyrolyzed at 600℃ gives the best ORR activity. An onset potential and the potential at the current density of -1.5 mA/cm2 for TsOH-doped catalyst after pyrolysis are 30 mV and 170 mV, which are more positive than those without pyrolized. Furthermore, the catalyst doped with TsOH shows higher tolerance to methanol compared with commercial Pt/C catalyst in 0.1 mol/L KOH. To understand this TsOH doping and pyrolyzed effect, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) are used to characterize these catalysts in terms of their structure and composition. XPS results indicate that the pyrrolic-N groups are the most active sites, a finding that is supported by the correspondence between changes in pyridinic-N content and ORR activity that occur with changing temperature. Sulfur species are also structurally bound to carbon in the forms of C-Sn-C, an additional beneficial factor for the ORR. 展开更多
关键词 non-precious metal electrocatalyst dual-dopant heat-treatment oxygen reduction reaction polymer electrolyte membrane fuel cell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部