The advent of induced pluripotent stem cells (iPSCs) has revolutionized the concept of cellular reprogramming and potentially will solve the immunological compatibility issues that have so far hindered the applicati...The advent of induced pluripotent stem cells (iPSCs) has revolutionized the concept of cellular reprogramming and potentially will solve the immunological compatibility issues that have so far hindered the application of human pluripotent stem cells in regenerative medicine. Recent findings showed that pluripotency is defined by a state of balanced lineage potency, which can be artificially instated through various procedures, including the conventional Yamanaka strategy. As a type of pluripotent stem cell, iPSCs are subject to the usual concerns over purity of differen- tiated derivatives and risks of tumor formation when used for cell-based therapy, though they pro- vide certain advantages in translational research, especially in the areas of personalized medicine, disease modeling and drug screening, iPSC-based technology, human embryonic stem cells (hESCs) and direct lineage conversion each will play distinct roles in specific aspects of translational medi- cine, and continue yielding surprises for scientists and the public.展开更多
基金supported by grants from the Ministry of Science and Technology of China(Grant No.2013CB966904,2014CB964600 and 2012CBA01307)the‘‘Strategic Priority Research Program’’of the Chinese Academy of Sciences(Grant No.XDA01040109)
文摘The advent of induced pluripotent stem cells (iPSCs) has revolutionized the concept of cellular reprogramming and potentially will solve the immunological compatibility issues that have so far hindered the application of human pluripotent stem cells in regenerative medicine. Recent findings showed that pluripotency is defined by a state of balanced lineage potency, which can be artificially instated through various procedures, including the conventional Yamanaka strategy. As a type of pluripotent stem cell, iPSCs are subject to the usual concerns over purity of differen- tiated derivatives and risks of tumor formation when used for cell-based therapy, though they pro- vide certain advantages in translational research, especially in the areas of personalized medicine, disease modeling and drug screening, iPSC-based technology, human embryonic stem cells (hESCs) and direct lineage conversion each will play distinct roles in specific aspects of translational medi- cine, and continue yielding surprises for scientists and the public.