Recently, the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array(PTA) time residuals from their 12.5 year da...Recently, the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array(PTA) time residuals from their 12.5 year data, which might be the first detection of the stochastic background of gravitational waves(GWs). We show that the amplitude and the power index of such waves imply that they could be the secondary GWs induced by the peaked curvature perturbation with a dust-like post inflationary era with-0.091 ≤ w ≤ 0.048. Such stochastic background of GWs naturally predicts substantial existence of planet-mass primordial black holes(PBHs), which can be the lensing objects for the ultrashort-timescale microlensing events observed by the Optical Gravitational Lensing Experiment(OGLE).展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2020YFC2201502)supported by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sk?odowska-Curie(Grant No.754496)+4 种基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB15)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(Grant No.YSBR-006)the National Natural Science Foundation of China(Grant No.12047503)the Japan Society for the Promotion of Science Grant-in-Aid for Early-Career Scientists(Grant No.JP20K14461)the World Premier International Research Center Initiative(WPI Initiative),MEXT,Japan。
文摘Recently, the North American Nanohertz Observatory for Gravitational Waves(NANOGrav) claimed the detection of a stochastic common-spectrum process of the pulsar timing array(PTA) time residuals from their 12.5 year data, which might be the first detection of the stochastic background of gravitational waves(GWs). We show that the amplitude and the power index of such waves imply that they could be the secondary GWs induced by the peaked curvature perturbation with a dust-like post inflationary era with-0.091 ≤ w ≤ 0.048. Such stochastic background of GWs naturally predicts substantial existence of planet-mass primordial black holes(PBHs), which can be the lensing objects for the ultrashort-timescale microlensing events observed by the Optical Gravitational Lensing Experiment(OGLE).