Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break d...Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break discrete symmetries simultaneously,such as time reversal and lattice rotational symmetry.In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings,despite its hexagonal lattice symmetry(or D3 h in bulk while C3 v on surface,to be precise).The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC<<Hc2R,signaling its probable surface-only electronic nematicity.In addition,we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution.It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate,CuxBi2Se3,where the nematicity occurs in various bulk measurements.In combination with theory,superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2,rather than the proximity effect.The issue of time reversal symmetry breaking is also addressed.Thus,our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.展开更多
We report the discovery of a new noncentrosymmetric superconductor CaPtAs.It crystallizes in a tetragonal structure(space group I41md,No.109),featuring three dimensional honeycomb networks of Pt-As and a much elongate...We report the discovery of a new noncentrosymmetric superconductor CaPtAs.It crystallizes in a tetragonal structure(space group I41md,No.109),featuring three dimensional honeycomb networks of Pt-As and a much elongated c-axis(a=b=4.18?,and c=43.70?).The superconductivity of CaPtAs with Tc=1.47 K was characterized by means of electrical resistivity,specific heat,and ac magnetic susceptibility.The electronic specific heat Ce(T)/T shows evidence for a deviation from the behavior of a conventional BCS superconductor,and can be reasonably fitted by a p-wave model.The upper critical fieldμ0Hc2 of CaPtAs exhibits a moderate anisotropy,with an in-plane value of around 204 mT and an out-of-plane value of 148 mT.Density functional theory calculations indicate that the Pt-5 d and As-4 p orbitals mainly contribute to the density of states near the Fermi level,showing that the Pt-As honeycomb networks may significantly influence the superconducting properties.展开更多
基金the National Key R&D Program of China(2016FYA0300402 and 2017YFA0303101)the National Natural Science Foundation of China(NSFC)(11674279 and 11374257)+8 种基金supported in part by the NSFC(U1732162 and 11974061)support from the Zhejiang Provincial Natural Science Foundation(LR18A04001)supported in part by the National Key Research and Development Program of China(2016YFA0300202)the National Natural Science Foundation of China(11774306)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB28000000)partly supported by KAKENHI(JP20H05164,19K14661,15H05883,18H01161,and JP17K05553)from JSPS‘‘JPhysics”(18H04306)financial support provided by the Project Number MOST-108-2112-M-001-049-MY2the Academia Sinica for the budget of AS-iMATE-109-13。
文摘Spontaneous symmetry breaking has been a paradigm to describe the phase transitions in condensed matter physics.In addition to the continuous electromagnetic gauge symmetry,an unconventional superconductor can break discrete symmetries simultaneously,such as time reversal and lattice rotational symmetry.In this work we report a characteristic in-plane 2-fold behaviour of the resistive upper critical field and point-contact spectra on the superconducting semimetal PbTaSe2 with topological nodal-rings,despite its hexagonal lattice symmetry(or D3 h in bulk while C3 v on surface,to be precise).The 2-fold behaviour persists up to its surface upper critical field Hc2R even though bulk superconductivity has been suppressed at its bulk upper critical field Hc2HC<<Hc2R,signaling its probable surface-only electronic nematicity.In addition,we do not observe any lattice rotational symmetry breaking signal from field-angle-dependent specific heat within the resolution.It is worth noting that such surface-only electronic nematicity is in sharp contrast to the observation in the topological superconductor candidate,CuxBi2Se3,where the nematicity occurs in various bulk measurements.In combination with theory,superconducting nematicity is likely to emerge from the topological surface states of PbTaSe2,rather than the proximity effect.The issue of time reversal symmetry breaking is also addressed.Thus,our results on PbTaSe2 shed new light on possible routes to realize nematic superconductivity with nontrivial topology.
基金the National Key R&D Program of China(Grant Nos.2016YFA0300202,and 2017YFA0303100)the National Natural Science Foundation of China(Grant Nos.U1632275,and 11874320)+1 种基金the Science Challenge Project of China(Grant No.TZ2016004)the Fundamental Research Funds for the Central Universities.
文摘We report the discovery of a new noncentrosymmetric superconductor CaPtAs.It crystallizes in a tetragonal structure(space group I41md,No.109),featuring three dimensional honeycomb networks of Pt-As and a much elongated c-axis(a=b=4.18?,and c=43.70?).The superconductivity of CaPtAs with Tc=1.47 K was characterized by means of electrical resistivity,specific heat,and ac magnetic susceptibility.The electronic specific heat Ce(T)/T shows evidence for a deviation from the behavior of a conventional BCS superconductor,and can be reasonably fitted by a p-wave model.The upper critical fieldμ0Hc2 of CaPtAs exhibits a moderate anisotropy,with an in-plane value of around 204 mT and an out-of-plane value of 148 mT.Density functional theory calculations indicate that the Pt-5 d and As-4 p orbitals mainly contribute to the density of states near the Fermi level,showing that the Pt-As honeycomb networks may significantly influence the superconducting properties.