期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Case Study on MJO Energy Transport Path in a Local Multi-scale Interaction Framework
1
作者 Yuanwen ZHANG guiwan chen +2 位作者 Jian LING Shenming FU Chongyin LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1929-1944,共16页
A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO w... A new local kinetic energy(KE)budget for the Madden−Julian Oscillation(MJO)is constructed in a multi-scale framework.This energy budget framework allows us to analyze the local energy conversion processes of the MJO with the high-frequency disturbances and the low-frequency background state.The KE budget analysis is applied to a pronounced MJO event during the DYNAMO field campaign to investigate the KE transport path of the MJO.The work done by the pressure gradient force and the conversion of available potential energy at the MJO scale are the two dominant processes that affect the MJO KE tendency.The MJO winds transport MJO KE into the MJO convection region in the lower troposphere while it is transported away from the MJO convection region in the upper troposphere.The energy cascade process is relatively weak,but the interaction between high-frequency disturbances and the MJO plays an important role in maintaining the high-frequency disturbances within the MJO convection.The MJO KE mainly converts to interaction KE between MJO and high-frequency disturbances over the area where the MJO zonal wind is strong.This interaction KE over the MJO convection region is enhanced through its flux convergence and further transport KE to the high-frequency disturbances.This process is conducive to maintaining the MJO convection.This study highlights the importance of KE interaction between the MJO and the high-frequency disturbances in maintaining the MJO convection. 展开更多
关键词 Madden−Julian Oscillation energy budget multi-scale interaction energy cascade kinetic energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部