Using gas and rock samples from major petroliferous basins in the world,the helium content,composition,isotopic compositions and the U and Th contents in rocks are analyzed to clarify the helium enrichment mechanism a...Using gas and rock samples from major petroliferous basins in the world,the helium content,composition,isotopic compositions and the U and Th contents in rocks are analyzed to clarify the helium enrichment mechanism and distribution pattern and the exploration ideas for helium-rich gas reservoirs.It is believed that the formation of helium-rich gas reservoirs depends on the amount of helium supplied to the reservoir and the degree of helium dilution by natural gas,and that the reservoir-forming process can be summarized as"multi-source helium supply,main-source helium enrichment,helium-nitrogen coupling,and homogeneous symbiosis".Helium mainly comes from the radioactive decay of U and Th in rocks.All rocks contain trace amounts of U and Th,so they are effective helium sources.Especially,large-scale ancient basement dominated by granite or metamorphic rocks is the main helium source.The helium generated by the decay of U and Th in the ancient basement in a long geologic history,together with the nitrogen generated by the cracking of the inorganic nitrogenous compounds in the basement rocks,is dissolved in the water and preserved.With the tectonic uplift,the ground water is transported upward along the fracture to the gas reservoirs,with helium and nitrogen released.Thus,the reservoirs are enriched with both helium and nitrogen,which present a clear concomitant and coupling relationship.In tensional basins in eastern China,where tectonic activities are strong,a certain proportion of mantle-derived helium is mixed in the natural gas.The helium-rich gas reservoirs are mostly located in normal or low-pressure zones above ancient basement with fracture communication,which later experience substantial tectonic uplift and present relatively weak seal,low intensity of natural gas charging,and active groundwater.Helium exploration should focus on gas reservoirs with fractures connecting ancient basement,large tectonic uplift,relatively weak sealing capacity,insufficient natural gas charging intensity,and rich ancient formation water,depending on the characteristics of helium enrichment,beyond the traditional idea of searching for natural gas sweetspots and high-yield giant gas fields simultaneously.展开更多
Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation cri...Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.展开更多
Sequence stratigraphy can be used to predict the oil and gas reservoir bodies and to choose the oil targets. Fan delta and sublacustrine fan systems are developed in the HGZ Area, which is located in front of the Altu...Sequence stratigraphy can be used to predict the oil and gas reservoir bodies and to choose the oil targets. Fan delta and sublacustrine fan systems are developed in the HGZ Area, which is located in front of the Altun Mountain in the west of the Qaidam Basin. On the basis of seismic and well drilling data, the deposits in the area were studied by using sequence stratigraphy and reservoir prediction techniques. Various reservoir prediction techniques used under the constraint of high resolution sequence framework could help to improve the precision of reservoir prediction and to recognize the pinch out line of sand layers, the distribution of isolated sandstone bodies and the types of oil pools. The study of sequence stratigraphy makes reservoir prediction more effective by dividing different scales of sequences and distinguishing the system tracts and parasequence sets, and indicates the internal relationship between oil/gas and sedimentary bodies in different system tracts with evolution in time and space.展开更多
基金Supported by the National Natural Science Foundation of China(42141022,42272189)Project of Ministry of Natural Resources of China(QGYQZYPJ2022-1)CNPC Core Project(2021ZG12)。
文摘Using gas and rock samples from major petroliferous basins in the world,the helium content,composition,isotopic compositions and the U and Th contents in rocks are analyzed to clarify the helium enrichment mechanism and distribution pattern and the exploration ideas for helium-rich gas reservoirs.It is believed that the formation of helium-rich gas reservoirs depends on the amount of helium supplied to the reservoir and the degree of helium dilution by natural gas,and that the reservoir-forming process can be summarized as"multi-source helium supply,main-source helium enrichment,helium-nitrogen coupling,and homogeneous symbiosis".Helium mainly comes from the radioactive decay of U and Th in rocks.All rocks contain trace amounts of U and Th,so they are effective helium sources.Especially,large-scale ancient basement dominated by granite or metamorphic rocks is the main helium source.The helium generated by the decay of U and Th in the ancient basement in a long geologic history,together with the nitrogen generated by the cracking of the inorganic nitrogenous compounds in the basement rocks,is dissolved in the water and preserved.With the tectonic uplift,the ground water is transported upward along the fracture to the gas reservoirs,with helium and nitrogen released.Thus,the reservoirs are enriched with both helium and nitrogen,which present a clear concomitant and coupling relationship.In tensional basins in eastern China,where tectonic activities are strong,a certain proportion of mantle-derived helium is mixed in the natural gas.The helium-rich gas reservoirs are mostly located in normal or low-pressure zones above ancient basement with fracture communication,which later experience substantial tectonic uplift and present relatively weak seal,low intensity of natural gas charging,and active groundwater.Helium exploration should focus on gas reservoirs with fractures connecting ancient basement,large tectonic uplift,relatively weak sealing capacity,insufficient natural gas charging intensity,and rich ancient formation water,depending on the characteristics of helium enrichment,beyond the traditional idea of searching for natural gas sweetspots and high-yield giant gas fields simultaneously.
基金Funded by National Science and Technology Major Project(2016ZX05046)China National Petroleum Corporation International Cooperation Project(2015D-4810-02).
文摘Continental shale oil has two types, low-medium maturity and medium-high maturity, and they are different in terms of resource environment, potential, production methods and technologies, and industrial evaluation criteria. In addition, continental shale oil is different from the shale oil and tight oil in the United States. Scientific definition of connotations of these resource types is of great significance for promoting the exploration of continental shale oil from "outside source" into "inside source" and making it a strategic replacement resource in the future. The connotations of low-medium maturity and medium-high maturity continental shale oils are made clear in this study. The former refers to the liquid hydrocarbons and multiple organic matter buried in the continental organic-rich shale strata with a burial depth deeper than 300 m and a Ro value less than 1.0%. The latter refers to the liquid hydrocarbons present in organic-rich shale intervals with a burial depth that in the "liquid window" range of the Tissot model and a Ro value greater than 1.0%. The geological characteristics, resource potential and economic evaluation criteria of different types of continental shale oil are systematically summarized. According to evaluation, the recoverable resources of in-situ conversion technology for shale oil with low-medium maturity in China is about(700-900)×10^8 t, and the economic recoverable resources under medium oil price condition($ 60-65/bbl) is(150-200)×10^8 t. Shale oil with low-medium maturity guarantees the occurrence of the continental shale oil revolution. Pilot target areas should be optimized and core technical equipment should be developed according to the key parameters such as the cumulative production scale of well groups, the production scale, the preservation conditions, and the economics of exploitation. The geological resources of medium-high maturity shale oil are about 100×10^8 t, and the recoverable resources can to be determined after the daily production and cumulative production of a single well reach the economic threshold. Continental shale oil and tight oil are different in lithological combinations, facies distribution, and productivity evaluation criteria. The two can be independently distinguished and coexist according to different resource types. The determination of China’s continental shale oil types, resources potentials, and tight oil boundary systems can provide a reference for the upcoming shale oil exploration and development practices and help the development of China’s continental shale oil.
基金Supported by the Project of "Ktqq-2005-013" from PetroChina, China National Petroleum Corporation(CNPC)
文摘Sequence stratigraphy can be used to predict the oil and gas reservoir bodies and to choose the oil targets. Fan delta and sublacustrine fan systems are developed in the HGZ Area, which is located in front of the Altun Mountain in the west of the Qaidam Basin. On the basis of seismic and well drilling data, the deposits in the area were studied by using sequence stratigraphy and reservoir prediction techniques. Various reservoir prediction techniques used under the constraint of high resolution sequence framework could help to improve the precision of reservoir prediction and to recognize the pinch out line of sand layers, the distribution of isolated sandstone bodies and the types of oil pools. The study of sequence stratigraphy makes reservoir prediction more effective by dividing different scales of sequences and distinguishing the system tracts and parasequence sets, and indicates the internal relationship between oil/gas and sedimentary bodies in different system tracts with evolution in time and space.