The partial substitution of Zr for La has been performed in order to ameliorate the electrochemical hydrogen storage performances of La–Mg–Ni based A2B7-type electrode alloys. The melt spinning technology was used t...The partial substitution of Zr for La has been performed in order to ameliorate the electrochemical hydrogen storage performances of La–Mg–Ni based A2B7-type electrode alloys. The melt spinning technology was used to prepare the La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x=0, 0.05, 0.1, 0.15, 0.2) electrode alloys. The impacts of the melt spinning and the substituting La with Zr on the structures and the electrochemical hydrogen storage characteristics of the alloys were systemically investigated. The analysis of XRD and TEM reveals that the as-cast and spun alloys have a multiphase structure, composing of two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi2. The electrochemical measurement indicates that both the substitution of Zr for La and the melt spinning ameliorate the electrochemical cycle stability of the alloys dramatically. Furthermore, the high rate discharge ability (HRD) of the as-spun (10 m/s) alloys notably declines with growing the amount of Zr substitution, while it first augments and then falls for the (x=0.1) alloy with rising the spinning rate.展开更多
The rapid development of network raise the role of WAN. As a large-scale backbone network, the failure of network components can lead to huge loss of data and revenue. How to improve the data switching speed and Quali...The rapid development of network raise the role of WAN. As a large-scale backbone network, the failure of network components can lead to huge loss of data and revenue. How to improve the data switching speed and Quality of Service of network data is more and more important problem which Internet Server Provides cared. Multi-Protocol Lable Switching (MPLS) is a new WAN technology which is currently being standardized by IETF. This paper analysise the architecture of MPLS and describe the mechanism of label switching protocol. In addition, this study analyses the encapsulation of data packet at the Label Switching Routers which is on the boundary of MPLS network. A Label Switching Path (LSP) is built by Label Distribute Protocol in core network. A conclution of "one time routed, more times switching" routed was reached.展开更多
The rapid development of electronic businesses raises the need for exchanging information between enterprise networks via internet. Ira secure connection is necessary then a virtual private network(VPN) is essential...The rapid development of electronic businesses raises the need for exchanging information between enterprise networks via internet. Ira secure connection is necessary then a virtual private network(VPN) is essential. IPSec use encrypting and encapsulating technology in client device and establishes a secure tunnel connection. The private network built by IPSec technology can ensure good transmission performance and service quality over public networks. This paper analyses the architecture of IPSec and describes the process of creating a site- to-site IPSec VPN between header and branch of enterprise over internet. In addition, this study analyses the encryption at the boundary of the network and concludes a propose some practical problems need to consider inside enterprise network.展开更多
Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structu...Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively.展开更多
文摘The partial substitution of Zr for La has been performed in order to ameliorate the electrochemical hydrogen storage performances of La–Mg–Ni based A2B7-type electrode alloys. The melt spinning technology was used to prepare the La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x=0, 0.05, 0.1, 0.15, 0.2) electrode alloys. The impacts of the melt spinning and the substituting La with Zr on the structures and the electrochemical hydrogen storage characteristics of the alloys were systemically investigated. The analysis of XRD and TEM reveals that the as-cast and spun alloys have a multiphase structure, composing of two main phases (La, Mg)2Ni7 and LaNi5 as well as a residual phase LaNi2. The electrochemical measurement indicates that both the substitution of Zr for La and the melt spinning ameliorate the electrochemical cycle stability of the alloys dramatically. Furthermore, the high rate discharge ability (HRD) of the as-spun (10 m/s) alloys notably declines with growing the amount of Zr substitution, while it first augments and then falls for the (x=0.1) alloy with rising the spinning rate.
文摘The rapid development of network raise the role of WAN. As a large-scale backbone network, the failure of network components can lead to huge loss of data and revenue. How to improve the data switching speed and Quality of Service of network data is more and more important problem which Internet Server Provides cared. Multi-Protocol Lable Switching (MPLS) is a new WAN technology which is currently being standardized by IETF. This paper analysise the architecture of MPLS and describe the mechanism of label switching protocol. In addition, this study analyses the encapsulation of data packet at the Label Switching Routers which is on the boundary of MPLS network. A Label Switching Path (LSP) is built by Label Distribute Protocol in core network. A conclution of "one time routed, more times switching" routed was reached.
文摘The rapid development of electronic businesses raises the need for exchanging information between enterprise networks via internet. Ira secure connection is necessary then a virtual private network(VPN) is essential. IPSec use encrypting and encapsulating technology in client device and establishes a secure tunnel connection. The private network built by IPSec technology can ensure good transmission performance and service quality over public networks. This paper analyses the architecture of IPSec and describes the process of creating a site- to-site IPSec VPN between header and branch of enterprise over internet. In addition, this study analyses the encryption at the boundary of the network and concludes a propose some practical problems need to consider inside enterprise network.
基金financially supported by the National Natural Science Foundation of China (No. 51161015)the Natural Science Foundation of Inner Mongolia, China (No. 2011ZD10)
文摘Melt spinning technology was used to prepare the Mg2Ni-type(Mg24Ni10Cu2)100-xNdx(x = 0, 5, 10, 15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of the spinning rate on the structures and gaseous and electrochemical hydrogen storage behaviors of the alloys were investigated.The analysis of X-ray diffraction(XRD), transmission electron microscope(TEM), and scanning electron microscope(SEM) linked with energy-dispersive spectroscopy(EDS)reveals that all the as-cast alloys hold a multiphase structure, involving the main phase Mg2 Ni and some secondary phases such as Mg6 Ni, Nd5Mg41, and Nd Ni.The as-spun Nd-free alloy displays an entire nanocrystalline structure,whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, and the amorphization degree visibly increases with the spinning rate increasing.The melt spinning ameliorates the hydrogen storage performances of the alloys dramatically.When the spinning rate rises from 0(the as-cast was defined as the spinning rate of 0 m s-1) to 40 m s-1, the discharge capacity increases from 86.4 to 452.8 m Ah g-1, the S20(the capacity maintain rate at 20 th cycle) value increases from53.2 % to 89.7 %, the hydrogen absorption saturation ratio(Ra5, a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increases from36.9 % to 91.5 %, and the hydrogen desorption ratio(Rd10,a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) increases from16.4 % to 47.7 % for the(x = 10) alloy, respectively.
基金Project supported by the National Key Technology R&D Program of China during the 12th Five-year Plan(No.2012BAJ20B02)the National Natural Science Foundation of China(No.51102182)