A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, ...A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge flow concentration method is used. In order to test the model's applicability, the BTOPMC model and the Xin'anjiang model were applied to the simulation of a humid watershed and a semi-humid to semi-arid watershed in China. The model parameters were optimized with the Shuffle Complex Evolution (SCE-UA) method. Results show that both models can effectively simulate the daily hydrograph in humid watersheds, but that the BTOPMC model performs poorly in semi-humid to semi-arid watersheds. The excess-infiltration mechanism should be incorporated into the BTOPMC model to broaden the model's applicability.展开更多
To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative t...To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, I QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.展开更多
AIM To investigate the efficacy and safety of transcutaneouselectroacupuncture(TEA) to alleviate postoperative ileus(POI) after gastrectomy.METHODS From April 2014 to February 2017, 63 gastric cancer patients were rec...AIM To investigate the efficacy and safety of transcutaneouselectroacupuncture(TEA) to alleviate postoperative ileus(POI) after gastrectomy.METHODS From April 2014 to February 2017, 63 gastric cancer patients were recruited from the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China. After gastrectomy, the patients were randomly allocated to the TEA(n = 33) or control(n = 30) group. The patients in the TEA group received 1 h TEA on Neiguan(ST36) and Zusanli(PC6) twice daily in the morning and afternoon until they passed flatus. The main outcomes were hours to the first flatus or bowel movement, time to nasogastric tube removal, time to liquid and semi-liquid diet, and hospital stay. The secondary outcomes included postoperative symptom assessment and complications.RESULTS Time to first flatus in the TEA group was significantly shorter than in the control group(73.19 ± 15.61 vs 82.82 ± 20.25 h, P = 0.038), especially for open gastrectomy(76.53 ± 14.29 vs 87.23 ± 20.75 h, P = 0.048). Bowel sounds on day 2 in the TEA group were significantly greater than in the control group(2.30 ± 2.61/min vs 1.05 ± 1.26/min, P = 0.017). Time to nasogastric tube removal in the TEA group was earlier than in the control group(4.22 ± 1.01 vs 4.97 ± 1.67 d, P = 0.049), as well as the time to liquid diet(5.0 ± 1.34 vs 5.83 ± 2.10 d, P = 0.039). Hospital stay in the TEA group was significantly shorter than in the control group(8.06 ± 1.75 vs 9.40 ± 3.09 d, P = 0.041). No significant differences in postoperative symptom assessment and complications were found between the groups. There were no severe adverse events related to TEA.CONCLUSION TEA accelerated bowel movements and alleviated POI after open gastrectomy and shortened hospital stay.展开更多
We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential. 9746 and Jinfeng ...We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential. 9746 and Jinfeng were planted in two locations of Shanghai, China, during 2005 and 2006. The results show that there was a large variation in grain yield between locations and years. The realization of high yield potential for the two types of rice was closely related to the improved sink size, such as more panicles per square meter or grains per panicle. Stem and leaf biomasses were mainly accumulated from tillering stage to heading stage, and showed slow decline during grain filling. Meanwhile, some photosynthetic characters including net photosynthesis rate (Pn), leaf area index (LAI), specific leaf area (SLA), fluorescence parameter (maximum quantum yield ofPSll, Fv/Fm), chlorophyll content (expressed as SPAD value), as well as nutrient (N, P, K) uptake were also measured to determine their variations over genotypes and environments and their relationships with grain yield. Although there were significant differences between years or locations for most measurements, SLA at tillering and heading stages, Fv/Fm and LAI at heading stage, stem biomass at heading and maturity stages, and leaf nitrogen concentration at tillering and heading stages remained little changed, indicating their pos- sible applications as selectable characters in breeding programs. It was also found that stem nitrogen accumulation at tillering stage is one of the most important and stable traits for high yield formation.展开更多
The activity of plasma membrane (PM) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreas...The activity of plasma membrane (PM) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreased leaf relative water content (RWC) and, as a result of drought-induced oxidative stress, the activities of antioxidant enzymes increased significantly. More interestingly, the intensity of applied water stress was correlated with increased production of H2O2 and O2^- and elevated activity of PM NADPH oxidase, a key enzyme of reactive oxygen species generation in plants. Histochemical analyses also revealed increased H2O2 and O2^- production in drought-stressed leaves. Application of diphenylene iodonium (DPI), an inhibitor of PM NADPH oxidase, did not alleviate drought-induced production of H2O2 and O2^-. Catalysis experiments indicated that the rice PM NADPH oxidase was partially fiavin-dependent. The pH and temperature optima for this enzyme were 9.8 and 40 ℃, respectively. In addition, drought stress enhanced the activity under alkaline pH and high temperature conditions. These results suggest that a complex regulatory mechanism, associated with the NADPH oxidase-H2O2 system, is involved in the response of rice to drought stress.展开更多
Waterlogging is a major abiotic stress limiting barley (Hordeum vulgare L.) yield and its stability in areas with excessive rainfall.Identification of genomic regions influencing the response of yield and its componen...Waterlogging is a major abiotic stress limiting barley (Hordeum vulgare L.) yield and its stability in areas with excessive rainfall.Identification of genomic regions influencing the response of yield and its components to waterlogging stress will enhance our understanding of the genetics of waterlogging tolerance and the development of more tolerant barley cultivars.Quantitative trait loci (QTLs) for grain yield and its components were identified using 156 doubled haploid (DH) lines derived from a cross between the cultivars Yerong (waterlogging-tolerant) and Franklin (waterlogging-sensitive) grown under different conditions (waterlogged and well drained).A total of 31 QTLs were identified for the measured characters from two experiments with two growth environments.The phenotypic variation explained by individual QTLs ranged from 4.74% to 55.34%.Several major QTLs determining kernel weight (KW),grains per spike (GS),spikes per plant (SP),spike length (SL) and grain yield (GY) were detected on the same region of chromosome 2H,indicating close linkage or pleiotropy of the gene(s) controlling these traits.Some different QTLs were identified under waterlogging conditions,and thus different markers may have to be used in selecting cultivars suitable for high rainfall areas.展开更多
Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To d...Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species(ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na^+/K^+ homeostasis regulation through controlling Na^+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.展开更多
High malting quality of barley (Hordeum vulgare L.) relies on many traits, such as β-amylase and limit dextrinase activities and β-glucan and protein fraction contents. In this study, interval mapping was utilized...High malting quality of barley (Hordeum vulgare L.) relies on many traits, such as β-amylase and limit dextrinase activities and β-glucan and protein fraction contents. In this study, interval mapping was utilized to detect quantitative trait loci (QTLs) affecting these malting quality parameters using a doubled haploid (DH) population from a cross of CM72 (six-rowed) by Gairdner (two-rowed) barley cultivars. A total of nine QTLs for eight traits were mapped to chromosomes 3H, 4H, 5H, and 7H. Five of the nine QTLs mapped to chromosome 3H, indicating a possible role ofloci on chromosome 3H on malting quality. The phenotypic variation accounted by individual QTL ranged from 8.08% to 30.25%. The loci of QTLs for D-glucan and limit dex- trinase were identified on chromosomes 4H and 5H, respectively. QTL for hordeins was coincident with the region of silica eluate (SE) protein on 3HS, while QTLs for albumins, globulins, and total protein exhibited overlapping. One locus on chromosome 3H was found to be related to (J-amylase, and two loci on chromosomes 5H and 7H were found to be associated with glutelins. The identification of these novel QTLs controlling malting quality may be useful for marker-assisted selection in improving barley malting quality.展开更多
The Gymnarchus niloticus fish can swim in surging and heaving directions only with a long undulating ribbon fin while keeping its body along almost straight line.These features substantially inspire the design of unde...The Gymnarchus niloticus fish can swim in surging and heaving directions only with a long undulating ribbon fin while keeping its body along almost straight line.These features substantially inspire the design of underwater vessels with high maneuverability and station keeping performance,which is characterized by peculiar vortex structures induced by undulating fin propulsion.To reveal the propulsion mechanism under the evolution of these complex vortex structures,the variation of velocity field with the undulating fin’s wave phase on cross section and mid-sagittal plane at wave amplitude of 85°is investigated by phase-locked digital particle image velocimetry(DPIV).Through experimental flow field images,two typical vortex structures are clearly identified,i.e.,streamwise vortex and crescent vortex,which is further explained by supplemental numerical simulations using large eddy simulation.Vortex characteristic and its evolution on cross sections and mid-sagittal planes is investigated,and its relationship with thrust,heave force is also analyzed.It is found that the two kinds of vortexes induce the main hydrodynamic forces in two directions synchronously,which brings the undulating fin propulsion an extra-ordinal maneuverability.The research will be useful for understanding the potential mechanism of this novel propulsion and is of great application prospect in designing more maneuverable underwater vehicles.展开更多
基金supported by the Research Fund for Commonweal Trades (Meteorology) (Grants No.GYHY200706037, GYHY (QX) 2007-6-1,GYHY200906007,and GYHY201006038)the National Natural Science Foundation of China (Grants No.50479017 and 40971016)Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0717)
文摘A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge flow concentration method is used. In order to test the model's applicability, the BTOPMC model and the Xin'anjiang model were applied to the simulation of a humid watershed and a semi-humid to semi-arid watershed in China. The model parameters were optimized with the Shuffle Complex Evolution (SCE-UA) method. Results show that both models can effectively simulate the daily hydrograph in humid watersheds, but that the BTOPMC model performs poorly in semi-humid to semi-arid watersheds. The excess-infiltration mechanism should be incorporated into the BTOPMC model to broaden the model's applicability.
基金supported by the National Natural Science Foundation of China (No. 30630047) the Project on Absorption of Intellects by Institutions of Higher Education for Academic Disciplinary Innova-tions (the 111 Project) (No. B06014), China
文摘To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, I QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.
基金Supported by Zhejiang Provincial Chinese Medicine Scientific Research Fund,No.2017ZA085
文摘AIM To investigate the efficacy and safety of transcutaneouselectroacupuncture(TEA) to alleviate postoperative ileus(POI) after gastrectomy.METHODS From April 2014 to February 2017, 63 gastric cancer patients were recruited from the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China. After gastrectomy, the patients were randomly allocated to the TEA(n = 33) or control(n = 30) group. The patients in the TEA group received 1 h TEA on Neiguan(ST36) and Zusanli(PC6) twice daily in the morning and afternoon until they passed flatus. The main outcomes were hours to the first flatus or bowel movement, time to nasogastric tube removal, time to liquid and semi-liquid diet, and hospital stay. The secondary outcomes included postoperative symptom assessment and complications.RESULTS Time to first flatus in the TEA group was significantly shorter than in the control group(73.19 ± 15.61 vs 82.82 ± 20.25 h, P = 0.038), especially for open gastrectomy(76.53 ± 14.29 vs 87.23 ± 20.75 h, P = 0.048). Bowel sounds on day 2 in the TEA group were significantly greater than in the control group(2.30 ± 2.61/min vs 1.05 ± 1.26/min, P = 0.017). Time to nasogastric tube removal in the TEA group was earlier than in the control group(4.22 ± 1.01 vs 4.97 ± 1.67 d, P = 0.049), as well as the time to liquid diet(5.0 ± 1.34 vs 5.83 ± 2.10 d, P = 0.039). Hospital stay in the TEA group was significantly shorter than in the control group(8.06 ± 1.75 vs 9.40 ± 3.09 d, P = 0.041). No significant differences in postoperative symptom assessment and complications were found between the groups. There were no severe adverse events related to TEA.CONCLUSION TEA accelerated bowel movements and alleviated POI after open gastrectomy and shortened hospital stay.
基金Project (No. 2005C12024) supported by the Department of Science and Technology of Zhejiang Province, China
文摘We characterized yield-relevant characters and their variations over genotypes and environments (locations and years) by examining two rice varieties (9746 and Jinfeng) with high yield potential. 9746 and Jinfeng were planted in two locations of Shanghai, China, during 2005 and 2006. The results show that there was a large variation in grain yield between locations and years. The realization of high yield potential for the two types of rice was closely related to the improved sink size, such as more panicles per square meter or grains per panicle. Stem and leaf biomasses were mainly accumulated from tillering stage to heading stage, and showed slow decline during grain filling. Meanwhile, some photosynthetic characters including net photosynthesis rate (Pn), leaf area index (LAI), specific leaf area (SLA), fluorescence parameter (maximum quantum yield ofPSll, Fv/Fm), chlorophyll content (expressed as SPAD value), as well as nutrient (N, P, K) uptake were also measured to determine their variations over genotypes and environments and their relationships with grain yield. Although there were significant differences between years or locations for most measurements, SLA at tillering and heading stages, Fv/Fm and LAI at heading stage, stem biomass at heading and maturity stages, and leaf nitrogen concentration at tillering and heading stages remained little changed, indicating their pos- sible applications as selectable characters in breeding programs. It was also found that stem nitrogen accumulation at tillering stage is one of the most important and stable traits for high yield formation.
基金Supported by the National Natural Science Foundation of China under GrantNo. 30871469the Zhejiang Province Natural Science Foundation of China under Grant No. Y306087
文摘The activity of plasma membrane (PM) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreased leaf relative water content (RWC) and, as a result of drought-induced oxidative stress, the activities of antioxidant enzymes increased significantly. More interestingly, the intensity of applied water stress was correlated with increased production of H2O2 and O2^- and elevated activity of PM NADPH oxidase, a key enzyme of reactive oxygen species generation in plants. Histochemical analyses also revealed increased H2O2 and O2^- production in drought-stressed leaves. Application of diphenylene iodonium (DPI), an inhibitor of PM NADPH oxidase, did not alleviate drought-induced production of H2O2 and O2^-. Catalysis experiments indicated that the rice PM NADPH oxidase was partially fiavin-dependent. The pH and temperature optima for this enzyme were 9.8 and 40 ℃, respectively. In addition, drought stress enhanced the activity under alkaline pH and high temperature conditions. These results suggest that a complex regulatory mechanism, associated with the NADPH oxidase-H2O2 system, is involved in the response of rice to drought stress.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No.2006AA10Z1C3)the Ministry of Education and the State Administration of Foreign Experts Affairs (111 Project) of China (No.B06014)the Zhejiang Provincial Department of Education Project (No.20070214),China
文摘Waterlogging is a major abiotic stress limiting barley (Hordeum vulgare L.) yield and its stability in areas with excessive rainfall.Identification of genomic regions influencing the response of yield and its components to waterlogging stress will enhance our understanding of the genetics of waterlogging tolerance and the development of more tolerant barley cultivars.Quantitative trait loci (QTLs) for grain yield and its components were identified using 156 doubled haploid (DH) lines derived from a cross between the cultivars Yerong (waterlogging-tolerant) and Franklin (waterlogging-sensitive) grown under different conditions (waterlogged and well drained).A total of 31 QTLs were identified for the measured characters from two experiments with two growth environments.The phenotypic variation explained by individual QTLs ranged from 4.74% to 55.34%.Several major QTLs determining kernel weight (KW),grains per spike (GS),spikes per plant (SP),spike length (SL) and grain yield (GY) were detected on the same region of chromosome 2H,indicating close linkage or pleiotropy of the gene(s) controlling these traits.Some different QTLs were identified under waterlogging conditions,and thus different markers may have to be used in selecting cultivars suitable for high rainfall areas.
基金Project supported by the National Natural Science Foundation of China(No.31620103912)the China Agriculture Research System(No.CARS-05)+1 种基金the Fundamental Research Funds for the Central Universities(No.2019FZA6011)the Jiangsu Collaborative Innovation Centre for Modern Crop Production(No.JCIC-MCP),China。
文摘Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumulating compatible solutes in the cytoplasm, reactive oxygen species(ROS) scavenging through enhancing the activity of anti-oxidative enzymes, and Na^+/K^+ homeostasis regulation through controlling Na^+ uptake and transportation. In this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance among plant species or genotypes within a species is presented. We also discuss the application and roles of different breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and perspectives of genome or gene editing in improving the salt tolerance of crops.
基金Project supported by the National Natural Science Foundation of China (Nos. 30630047 and 30771281)the Hi-Tech Research and Development Program (863) of China (No. 2006AA10Z1C3)the Ministry of Education and the State Administration of Foreign Experts Affairs (111 Project) of China (No. B06014)
文摘High malting quality of barley (Hordeum vulgare L.) relies on many traits, such as β-amylase and limit dextrinase activities and β-glucan and protein fraction contents. In this study, interval mapping was utilized to detect quantitative trait loci (QTLs) affecting these malting quality parameters using a doubled haploid (DH) population from a cross of CM72 (six-rowed) by Gairdner (two-rowed) barley cultivars. A total of nine QTLs for eight traits were mapped to chromosomes 3H, 4H, 5H, and 7H. Five of the nine QTLs mapped to chromosome 3H, indicating a possible role ofloci on chromosome 3H on malting quality. The phenotypic variation accounted by individual QTL ranged from 8.08% to 30.25%. The loci of QTLs for D-glucan and limit dex- trinase were identified on chromosomes 4H and 5H, respectively. QTL for hordeins was coincident with the region of silica eluate (SE) protein on 3HS, while QTLs for albumins, globulins, and total protein exhibited overlapping. One locus on chromosome 3H was found to be related to (J-amylase, and two loci on chromosomes 5H and 7H were found to be associated with glutelins. The identification of these novel QTLs controlling malting quality may be useful for marker-assisted selection in improving barley malting quality.
基金Projects supported by the National Natural Science Foundation of China(Grant Nos.51379193,51779233).
文摘The Gymnarchus niloticus fish can swim in surging and heaving directions only with a long undulating ribbon fin while keeping its body along almost straight line.These features substantially inspire the design of underwater vessels with high maneuverability and station keeping performance,which is characterized by peculiar vortex structures induced by undulating fin propulsion.To reveal the propulsion mechanism under the evolution of these complex vortex structures,the variation of velocity field with the undulating fin’s wave phase on cross section and mid-sagittal plane at wave amplitude of 85°is investigated by phase-locked digital particle image velocimetry(DPIV).Through experimental flow field images,two typical vortex structures are clearly identified,i.e.,streamwise vortex and crescent vortex,which is further explained by supplemental numerical simulations using large eddy simulation.Vortex characteristic and its evolution on cross sections and mid-sagittal planes is investigated,and its relationship with thrust,heave force is also analyzed.It is found that the two kinds of vortexes induce the main hydrodynamic forces in two directions synchronously,which brings the undulating fin propulsion an extra-ordinal maneuverability.The research will be useful for understanding the potential mechanism of this novel propulsion and is of great application prospect in designing more maneuverable underwater vehicles.