Flying and marine animals often use flapping wings or tails to generate thrust. In this paper, we will use the simplest flapping model with a sinusoidal pitching mo- tion over a range of frequency and amplitude to inv...Flying and marine animals often use flapping wings or tails to generate thrust. In this paper, we will use the simplest flapping model with a sinusoidal pitching mo- tion over a range of frequency and amplitude to investigate the mechanism of thrust generation. Previous work focuses on the Karman vortex street and the reversed Karman vor- tex street but the transition between two states remains un- known. The present numerical simulation provides a com- plete scenario of flow patterns from the Karman vortex street to reversed Karman vortex street via aligned vortices and the ultimate state is the deflected Karman vortex street, as the parameters of flapping motions change. The results are in agreement with the previous experiment. We make further discussion on the relationship of the observed states with drag and thrust coefficients and explore the mechanism of enhanced thrust generation using flapping motions.展开更多
基金supported by the Natural Science Foundation of Jiangxi Province(2010GZC0162)
文摘Flying and marine animals often use flapping wings or tails to generate thrust. In this paper, we will use the simplest flapping model with a sinusoidal pitching mo- tion over a range of frequency and amplitude to investigate the mechanism of thrust generation. Previous work focuses on the Karman vortex street and the reversed Karman vor- tex street but the transition between two states remains un- known. The present numerical simulation provides a com- plete scenario of flow patterns from the Karman vortex street to reversed Karman vortex street via aligned vortices and the ultimate state is the deflected Karman vortex street, as the parameters of flapping motions change. The results are in agreement with the previous experiment. We make further discussion on the relationship of the observed states with drag and thrust coefficients and explore the mechanism of enhanced thrust generation using flapping motions.