The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
This paper analyzes the characteristics of the landscape structures and landacape ecological processes in arid regions of China. Landscape structure is simplicity and homogeneity with the pattern of desert oasis river...This paper analyzes the characteristics of the landscape structures and landacape ecological processes in arid regions of China. Landscape structure is simplicity and homogeneity with the pattern of desert oasis river and canal corridor. The spatial distribution of landscape heterogeneity mosaics is relatively dependent on water resources. In arid regions, the landscape changes rapidly and extensively because of the sensitive landscape ecosystems and fragile regional ecosystems. For the sustainable development of arid regions, the theories and methods for the eco environmental construction and the strategies of ecological construction in the arid regions were proposed in the view of landscape ecology. Keynote subjects of landscape ecology were also discussed. The paper points out that protecting and increasing landscape diversity and heterogeneity are critical to control ecological safety in arid regions.展开更多
Radiation damage in 4H-SiC samples implanted by 70 keV oxygen ion beams was studied using photoluminescence and electron spin resonance techniques. ESR peak of g = 2.0053 and two zero-phonon lines were observed with t...Radiation damage in 4H-SiC samples implanted by 70 keV oxygen ion beams was studied using photoluminescence and electron spin resonance techniques. ESR peak of g = 2.0053 and two zero-phonon lines were observed with the implanted samples. Combined with theoretical calculations, we found that the main defect in the implanted 4H-Si C samples was oxygen-vacancy complex. The calculated defect formation energies showed that the oxygen-vacancy centers were stable in n-type 4H-Si C.Moreover, the V_(Si)O_C^0 and V_(Si)O_C^(-1) centers were optically addressable. The results suggest promising spin coherence properties for quantum information science.展开更多
The thermal state of frozen ground and its changes are important for understanding environmental change and supporting related applications to the Earth’s Third Pole,which is a hotspot area for science research.Howev...The thermal state of frozen ground and its changes are important for understanding environmental change and supporting related applications to the Earth’s Third Pole,which is a hotspot area for science research.However,challenges remain in data and modelling,meaning that much information is unavailable,especially for the entire Third Pole region.Here,we provided basic statistical data regarding the current state of frozen ground and its changes over the 1960s–2010s across the entire Third Pole by integrating nearly all currently available ground observation data and high-quality spatial data using machine learning models and existing high-quality frozen ground data products.The results show that the current(2000–2018)areal extents of permafrost and seasonally frozen ground in the Third Pole are approximately 1.27×10^(6)km^(2)(1.15×10^(6)to 1.39×10^(6)km^(2))and 2.59×10^(6)km^(2),accounting for 28%and 58%,respectively.The areal extent of permafrost region is approximately 50%(23%–93%)larger than that of permafrost area(land underlain by permafrost),especially in some early maps.The corresponding regional average of the mean annual ground temperature is approximately−1.51℃(−1.75 to−1.27℃)in the permafrost area.The regional average of active layer thickness overlying the permafrost and the maximum frost depth for regions of seasonally frozen ground are 235 cm(233–237 cm)and 92 cm,respectively.From the 1960s to the 2010s,on average,permafrost in the Third Pole warmed at a rate of 0.17℃per decade,which was associated with increases in the maximum thaw depth at a rate of 4.42 cm per decade.The regional average of the maximum frost depth declined at a rate of 2.34 cm per decade over the same period.This synthesis highlights the differences between the two terms(permafrost region and permafrost area)and provides crucial information for frozen ground in the Third Pole with higher accuracy for the scientific community and the public.展开更多
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
文摘This paper analyzes the characteristics of the landscape structures and landacape ecological processes in arid regions of China. Landscape structure is simplicity and homogeneity with the pattern of desert oasis river and canal corridor. The spatial distribution of landscape heterogeneity mosaics is relatively dependent on water resources. In arid regions, the landscape changes rapidly and extensively because of the sensitive landscape ecosystems and fragile regional ecosystems. For the sustainable development of arid regions, the theories and methods for the eco environmental construction and the strategies of ecological construction in the arid regions were proposed in the view of landscape ecology. Keynote subjects of landscape ecology were also discussed. The paper points out that protecting and increasing landscape diversity and heterogeneity are critical to control ecological safety in arid regions.
基金supported by the National Science Foundation of China(Nos.61076089,11505265 and 61227902)the Ministry of Education of China(SRF for ROCS,SEM)
文摘Radiation damage in 4H-SiC samples implanted by 70 keV oxygen ion beams was studied using photoluminescence and electron spin resonance techniques. ESR peak of g = 2.0053 and two zero-phonon lines were observed with the implanted samples. Combined with theoretical calculations, we found that the main defect in the implanted 4H-Si C samples was oxygen-vacancy complex. The calculated defect formation energies showed that the oxygen-vacancy centers were stable in n-type 4H-Si C.Moreover, the V_(Si)O_C^0 and V_(Si)O_C^(-1) centers were optically addressable. The results suggest promising spin coherence properties for quantum information science.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19070204)the National Natural Science Foundation of China(42071421).
文摘The thermal state of frozen ground and its changes are important for understanding environmental change and supporting related applications to the Earth’s Third Pole,which is a hotspot area for science research.However,challenges remain in data and modelling,meaning that much information is unavailable,especially for the entire Third Pole region.Here,we provided basic statistical data regarding the current state of frozen ground and its changes over the 1960s–2010s across the entire Third Pole by integrating nearly all currently available ground observation data and high-quality spatial data using machine learning models and existing high-quality frozen ground data products.The results show that the current(2000–2018)areal extents of permafrost and seasonally frozen ground in the Third Pole are approximately 1.27×10^(6)km^(2)(1.15×10^(6)to 1.39×10^(6)km^(2))and 2.59×10^(6)km^(2),accounting for 28%and 58%,respectively.The areal extent of permafrost region is approximately 50%(23%–93%)larger than that of permafrost area(land underlain by permafrost),especially in some early maps.The corresponding regional average of the mean annual ground temperature is approximately−1.51℃(−1.75 to−1.27℃)in the permafrost area.The regional average of active layer thickness overlying the permafrost and the maximum frost depth for regions of seasonally frozen ground are 235 cm(233–237 cm)and 92 cm,respectively.From the 1960s to the 2010s,on average,permafrost in the Third Pole warmed at a rate of 0.17℃per decade,which was associated with increases in the maximum thaw depth at a rate of 4.42 cm per decade.The regional average of the maximum frost depth declined at a rate of 2.34 cm per decade over the same period.This synthesis highlights the differences between the two terms(permafrost region and permafrost area)and provides crucial information for frozen ground in the Third Pole with higher accuracy for the scientific community and the public.