期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synchronization of nanowire-based spin Hall nano-oscillators
1
作者 Biao Jiang Wen-Jun Zhang +5 位作者 Mehran Khan Alam Shu-Yun Yu Guang-Bing Han guo-lei liu Shi-Shen Yan Shi-Shou Kang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期549-553,共5页
The synchronization of the spin Hall nano-oscillator(SHNO)device driven by the pure spin current has been investigated with micromagnetic simulations.It was found that the power spectra of nanowire-based SHNO devices ... The synchronization of the spin Hall nano-oscillator(SHNO)device driven by the pure spin current has been investigated with micromagnetic simulations.It was found that the power spectra of nanowire-based SHNO devices can be synchronized by varying the current flowing in the heavy metal(HM)layer.The synchronized signals have relatively high power and narrow linewidth,favoring the potential applications.We also found that the synchronized spectra are strongly dependent on both the number and length of nanowires.Moreover,a periodic modulation of power spectra can be obtained by introducing interfacial Dzyaloshinskii–Moriya interaction(iDMI).Our findings could enrich the current understanding of spin dynamics driven by the pure spin current.Further,it could help to design novel spintronic devices. 展开更多
关键词 spin Hall nano-oscillators SYNCHRONIZATION Dzyaloshinskii–Moriya interaction spin wave
下载PDF
Effects ofslip mode on microstructure evolution and compressive flow behavior of extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy
2
作者 Zhi-yong YOU Wei-li CHENG +6 位作者 guo-lei liu Jian LI Li-fei WANG Hui YU Hong-xia WANG Ze-qin CUI Jin-hui WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第11期3599-3614,共16页
The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,... The influence of the slip mode on the microstructure evolution and compressive flow behavior at different strains in an extruded dilute Mg−0.5Bi−0.5Sn−0.5Mn alloy was analyzed through electron backscatter diffraction,X-ray diffraction,transmission electron microscopy,and hot compression tests.The results showed that at a low strain of 0.05,the basal<a>,pyramidal<a>and<c+a>slip modes were simultaneously activated.Nevertheless,at the middle stage of deformation(strain of 0.1,0.2 and 0.5),the<a>slip mode was difficult to be activated and<c+a>slip mode became dominant.The deformation process between strains of 0.2 and 0.5 was primarily characterized by the softening effect resulting from the simultaneous occurrence of continuous dynamic recrystallization and discontinuous dynamic recrystallization.Ultimately,at strain of 0.8,a dynamic equilibrium was established,with the flow stress remaining constant due to the interplay between the dynamic softening brought about by discontinuous dynamic recrystallization and the work-hardening effect induced by the activation of the basal<a>slip mode. 展开更多
关键词 dilute Mg−Bi−Sn−Mn alloy slip mode hot compression flow behavior dynamic recrystallization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部