期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimization of investment casting process parameters to reduce warpage of turbine blade platform in DD6 alloy 被引量:4
1
作者 Jia-wei tian Kun Bu +5 位作者 Jin-hui Song guo-liang tian Fei Qiu Dan-qing Zhao Zong-li Jin Yang Li 《China Foundry》 SCIE 2017年第6期469-477,共9页
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at... The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm. 展开更多
关键词 PROCAST optimization of process parameters warping deformation of platform orthogonal test genetic algorithm BP-neural network
下载PDF
Efficient Algorithms for Generating Truncated Multivariate Normal Distributions
2
作者 Jun-wu YU guo-liang tian 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2011年第4期601-612,共12页
Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data au... Sampling from a truncated multivariate normal distribution (TMVND) constitutes the core computational module in fitting many statistical and econometric models. We propose two efficient methods, an iterative data augmentation (DA) algorithm and a non-iterative inverse Bayes formulae (IBF) sampler, to simulate TMVND and generalize them to multivariate normal distributions with linear inequality constraints. By creating a Bayesian incomplete-data structure, the posterior step of the DA Mgorithm directly generates random vector draws as opposed to single element draws, resulting obvious computational advantage and easy coding with common statistical software packages such as S-PLUS, MATLAB and GAUSS. Furthermore, the DA provides a ready structure for implementing a fast EM algorithm to identify the mode of TMVND, which has many potential applications in statistical inference of constrained parameter problems. In addition, utilizing this mode as an intermediate result, the IBF sampling provides a novel alternative to Gibbs sampling and elimi- nares problems with convergence and possible slow convergence due to the high correlation between components of a TMVND. The DA algorithm is applied to a linear regression model with constrained parameters and is illustrated with a published data set. Numerical comparisons show that the proposed DA algorithm and IBF sampler are more efficient than the Gibbs sampler and the accept-reject algorithm. 展开更多
关键词 data augmentation EM algorithm Gibbs sampler IBF sampler linear inequality constraints truncated multivariate normal distribution
原文传递
基于混合正态的新型多元Laplace分布
3
作者 张弛 邓文礼 +2 位作者 李涛 孙源 田国梁 《中国科学:数学》 CSCD 北大核心 2020年第5期711-728,共18页
本文从正态方差混合模型出发,提出一种新的多元Laplace分布—Ⅱ型多元Laplace分布.区别于经典的多元Laplace分布,新型分布中随机向量的各分量相对应的混合变量可以具有不同的值,并且各分量之间的关系仅与正态随机向量的相关结构有关.当... 本文从正态方差混合模型出发,提出一种新的多元Laplace分布—Ⅱ型多元Laplace分布.区别于经典的多元Laplace分布,新型分布中随机向量的各分量相对应的混合变量可以具有不同的值,并且各分量之间的关系仅与正态随机向量的相关结构有关.当正态分布的协方差矩阵是对角矩阵时,新型分布包含了多个独立的一元Laplace分布的乘积.本文利用容易处理的随机表示得到了新型分布的概率密度函数和其他统计性质,并通过条件期望最大化(expectation/conditional maximization, ECM)算法得到参数的极大似然估计,此外,也考虑了Bayes方法.本文通过仿真模拟实验,对估计方法的表现进行了评价.实例分析结果表明本文提出的新型多元Laplace分布相较于经典的多元Laplace分布更加灵活. 展开更多
关键词 ECM算法 多元Laplace分布 随机表示 一元Laplace分布
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部