期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Relationships between distribution characteristics of ceramic fragments and anti-penetration performance of ceramic composite bulletproof insert plates 被引量:1
1
作者 Wen-hao Yu Wei-ping Li +3 位作者 Yi-fan Shangguan Xin-yang Ji Tian Ma guo-qing wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期103-110,共8页
Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size ... Through quantitative statistics and morphological characterization of ceramic fragments for ceramic composite bulletproof insert plates(CCBIPs),distribution characteristics of ceramic fragments within a specific size range were analyzed for different Armor Piercing Incendiary(API)and shot times.To quantitatively evaluate the effect of energy absorption for ceramic plates,a model of energy absorption during penetration for CCBIPs was established based on statistics of the size distribution of ceramic fragments(SDCF).Variation in the SDCF and its influence on energy absorption for CCBIPs were investigated.The results indicate that the distribution feature of ceramic fragments in the range of 0.25-2.25 mm is Gaussian distribution.Compared with Type 56 of API(56-API),ceramic fragments formed by 53-API with higher kinetic energy possess more quantity and more concentrated distribution,whose average equivalence size decreases by 6.5%,corresponding to increasing by 83.9%of estimated energy absorption.Besides,the ability of CCBIPs to resist the third shot is significantly weakened,whose estimated energy absorption decreases by 58.8%compared with the first shot.More concentrated distribution and fewer fragments are formed after the third shot,the average equivalence size of ceramic fragments increases by 6.9%,which may attribute to the micro-cracks induced by the previous two shots. 展开更多
关键词 Bulletproof insert plate Ceramic fragment Statistic Energy absorption Anti-penetration performance
下载PDF
Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating microRNA-199a and downregulating MMP-9 expression 被引量:14
2
作者 Jian Zhang Dan Zhang +2 位作者 guo-qing wu Zhi-Ying Feng Sheng-Mei Zhu 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2013年第3期305-309,共5页
BACKGROUND: Propofol is one of the extensively and commonly used intravenous anesthetics and has the ability to influence the proliferation, motility, and invasiveness of many cancer cells. In this study, the effects ... BACKGROUND: Propofol is one of the extensively and commonly used intravenous anesthetics and has the ability to influence the proliferation, motility, and invasiveness of many cancer cells. In this study, the effects of propofol on hepatocellular carcinoma cells invasion ability were examined. METHODS: We assessed the invasion ability of HepG2 cells in vitro by determining enzyme activity and protein expression of MMP-9 using gelatin zymography assay and Western blot. The real-time PCR was used to evaluate the effect of propofol on microRNA-199a (miR-199a) expression, and miR-199a-2 precursor to evaluate whether over-expression of miR-199a can affect MMP-9 expression. Finally, the effect of miR-199a on propofol-induced anti-tumor activity using anti-miR-199a was assessed. RESULTS: Propofol significantly elevated the expression of miR-199a and inhibited the invasiveness of HepG2 cells. Propofol also efficiently decreased enzyme activity and protein expression of MMP-9. Moreover, the over-expression of miR-199a decreased MMP-9 protein level. Interestingly, the neutralization of miR-199a by anti-miR-199a antibody reversed the effect of propofol on alleviation of tumor invasiveness and inhibition of MMP-9 activity in HepG2 cells. CONCLUSION: Propofol decreases hepatocellular carcinoma cell invasiveness, which is partly due to the down-regulation of MMP-9 expression by miR-199a. 展开更多
关键词 PROPOFOL INVASION MMP-9 HepG2 cells microRNA-199a hepatocellular carcinoma
下载PDF
Thickness-dependent excitonic properties of atomically thin 2H-MoTe2
3
作者 Jin-Huan Li Dan Bing +4 位作者 Zhang-Ting wu guo-qing wu Jing Bai Ru-Xia Du Zheng-Qing Qi 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期452-456,共5页
Two-dimensional(2D)2H-MoTe2 is a promising semiconductor because of its small bandgap,strong absorption,and low thermal conductivity.In this paper,we systematically study the optical and excitonic properties of atomic... Two-dimensional(2D)2H-MoTe2 is a promising semiconductor because of its small bandgap,strong absorption,and low thermal conductivity.In this paper,we systematically study the optical and excitonic properties of atomically thin 2H-MoTe2(1–5 layers).Due to the fact that the optical contrast and Raman spectra of 2H-MoTe2 with different thicknesses exhibit distinctly different behaviors,we establish a quantitative method by using optical images and Raman spectra to directly identify the layers of 2H-MoTe2 thin films.Besides,excitonic states and binding energy in monolayer/bilayer 2H-MoTe2 are measured by temperature-dependent photoluminescence(PL)spectroscopy.At temperature T=3.3 K,we can observe an exciton emission at^1.19 eV and trion emission at^1.16 eV for monolayer 2H-MoTe2.While at room temperature,the exciton emission and trion emission both disappear for their small binding energy.We determine the exciton binding energy to be 185 meV(179 meV),trion binding energy to be 20 meV(18 me V)for the monolayer(bilayer)2H-MoTe2.The thoroughly studies of the excitonic states in atomically thin 2H-MoTe2 will provide guidance for future practical applications. 展开更多
关键词 2H-MoTe2 PHOTOLUMINESCENCE RAMAN exciton and trion
下载PDF
Exploration in Optimal Design of an Airfoil with a Leading Edge Rotating Cylinder 被引量:4
4
作者 Yuan-yuan ZHANG Dian-gui HUANG +1 位作者 Xiao-jing SUN guo-qing wu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第4期318-325,共8页
Based on the theory of moving surface boundary layer control(MSBC),a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performan... Based on the theory of moving surface boundary layer control(MSBC),a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performance even at large angles of attack.Thus,this research aims to give guidance on optimizing the design of this kind of airfoil with high lift coefficients.Using computational fluid dynamics(CFD)technique,the CFD simulation results have been compared with the experimental results available in the literature,and then the SST two-equation model is selected as the appropriate turbulence model.At a given cylinder surface velocity ratio,the cylinder diameter d,the drop height of trailing edgeδand the curvatures of the pressure and suction surfaces of the airfoil are regarded as the optimal design parameters and the airfoil lift coefficient is considered as the optimization objective function.Therefore,using orthogonal optimization method,we herein develop a new design of airfoil favorable for having a rotating leading edge.It has been numerically proven that the resulting airfoil has good capability of achieving a substantially superior performance when compared to the airfoils of the prior art. 展开更多
关键词 boundary layer control AIRFOIL leading edge rotating cylinder (LERC) numerical simulation design parameters orthogonal optimization method.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部