(A165Cu20Fe15)100-xSnx (x=0, 12, 20, 30) and A157SitoCulsFe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the prod...(A165Cu20Fe15)100-xSnx (x=0, 12, 20, 30) and A157SitoCulsFe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the produced quasicrystalline bulks were investigated. It was found that the main phases in the A165Cu2oFe15 sample were crystalline L-Al13Fe4 and icosahedral quasicrystal together with a small volume fraction of 0-A12Cu phase. The volume fraction of icosahedral phase decreased as the Sn content in the (A165Cu20Fe18)100-xSnx samples increased owing to the formation of β-CuSn phase. The increase of Sn content improved the brittleness of the quasicrystal samples. The morphology of the solidification microstructure in the Al57Si10Cu18Fe15 sample changed from elongated shape to spherical shape due to the addition of Si. The nanohardness of the laser multilayer cladded quasicrystal samples was equal to that of the as-cast sample prepared by vacuum quenching. In terms of hardness, the laser cladded A157Si10Cu18Fe15 quasicrystalline alloy has the highest value among all the investigated samples.展开更多
Microstructure evolution and tribological properties of a new Ti Zr Al V alloy have been investigated in the present study. Various microstructures, i.e., equiaxed grain structure, dual-phase lamella structure, and he...Microstructure evolution and tribological properties of a new Ti Zr Al V alloy have been investigated in the present study. Various microstructures, i.e., equiaxed grain structure, dual-phase lamella structure, and heterogeneous lamellar structure, have been successfully prepared, and the effect of the microstructure on tribological properties was explored by means of cold severe plastic deformation combined with subsequent recrystallization annealing and aging treatments. The special heterogeneous lamellar-structured alloy exhibits a high ultimate tensile strength(~1545 MPa),reasonable ductility(~7.9%), and excellent wear resistance as compared with the equiaxed grain-structured and dualphase lamella-structured alloy. The present study demonstrates an alternative route for enhancing the tribological properties of alloys with heterogeneous lamellar structure.展开更多
基金supported by the National Key Technologies R&D Program of China (No.2011BAF11B00)
文摘(A165Cu20Fe15)100-xSnx (x=0, 12, 20, 30) and A157SitoCulsFe15 powders were cladded on a medium carbon steel (45# steel) substrate by laser multilayer cladding, respectively. The phases and properties of the produced quasicrystalline bulks were investigated. It was found that the main phases in the A165Cu2oFe15 sample were crystalline L-Al13Fe4 and icosahedral quasicrystal together with a small volume fraction of 0-A12Cu phase. The volume fraction of icosahedral phase decreased as the Sn content in the (A165Cu20Fe18)100-xSnx samples increased owing to the formation of β-CuSn phase. The increase of Sn content improved the brittleness of the quasicrystal samples. The morphology of the solidification microstructure in the Al57Si10Cu18Fe15 sample changed from elongated shape to spherical shape due to the addition of Si. The nanohardness of the laser multilayer cladded quasicrystal samples was equal to that of the as-cast sample prepared by vacuum quenching. In terms of hardness, the laser cladded A157Si10Cu18Fe15 quasicrystalline alloy has the highest value among all the investigated samples.
基金support of the National Basic Research Program of China(No.2010CB731606)the National Natural Science Foundation of China(Nos.51471144,51471145,and 51371074)the research project of the Ministry of Education(No.ZD2016076)of Hebei Province
文摘Microstructure evolution and tribological properties of a new Ti Zr Al V alloy have been investigated in the present study. Various microstructures, i.e., equiaxed grain structure, dual-phase lamella structure, and heterogeneous lamellar structure, have been successfully prepared, and the effect of the microstructure on tribological properties was explored by means of cold severe plastic deformation combined with subsequent recrystallization annealing and aging treatments. The special heterogeneous lamellar-structured alloy exhibits a high ultimate tensile strength(~1545 MPa),reasonable ductility(~7.9%), and excellent wear resistance as compared with the equiaxed grain-structured and dualphase lamella-structured alloy. The present study demonstrates an alternative route for enhancing the tribological properties of alloys with heterogeneous lamellar structure.