期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of water loss during curing on hydration reaction and hydrates conversion in calcium aluminate cement-bonded castables
1
作者 Zhong-zhuang Zhang Xiao-yu Wang +5 位作者 Song-zhu Chu Jin-yan Zeng Yuan-dong Mu You-qi Li Zhong-tao Luo guo-tian ye 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2133-2141,共9页
Free water available in calcium aluminate cement(CAC)-bonded castables is crucial for the hydration of CAC and the conversion of hydration products in the curing and drying processes,as both the hydration and conversi... Free water available in calcium aluminate cement(CAC)-bonded castables is crucial for the hydration of CAC and the conversion of hydration products in the curing and drying processes,as both the hydration and conversion reactions are dissolution–precipitation reactions.To elucidate the effect of different levels of free water loss upon the hydration of CAC,the conversion of hydration products and the mechanical strength of the CAC-bonded castables,the CAC-bonded castables were subjected to sealed and unsealed curing conditions at 50℃ and drying at 110℃.The results demonstrate that the fast removal of free water during unsealed curing would hinder the conversion from 2CaO·Al_(2)O_(3)·8H_(2)O to 3CaO·Al_(2)O_(3)·6H_(2)O and consequently prevent the deterioration of strength.As a comparison,although sealed-cured samples have less water loss and high degree of hydration of CAC,they still show lower strength than the unsealed samples after curing.The following drying process further accelerates the hydration of residual calcium aluminate clinkers for both the sealed and unsealed samples,but still does not favor the conversion from 2CaO·Al_(2)O_(3)·8H_(2)O to 3CaO·Al_(2)O_(3)·6H_(2)O in the unsealed-cured samples. 展开更多
关键词 Water loss HYDRATION CONVERSION Mechanical strength Calcium aluminate cement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部