Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrin...Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrinsically poor rate performance and rapid capacity deterioration.Here,we remove the roadblock by compositing MnO2 nanorods with highly conductive graphene,which remarkably enhances the electrochemical properties of the MnO2 cathode.Benefiting from the boosted electric conductivity and ion diffusion rate as well as the structural protection of graphene,the Zn//MnO2-graphene battery presents an admirable capacity of 301 mAh g^-1 at 0.5 A g^-1,corresponding to a high energy density of 411.6 Wh kg^-1.Even at a high current density of 10 A g^-1,a decent capacity of 95.8 mAh g^-1 is still obtained,manifesting its excellent rate property.Furthermore,an impressive power density of 15 kW kg^-1 is achieved by the Zn//MnO2-graphene battery.展开更多
The high penetration of distributed renewable energy raises a higher concern for the safe and economic operation of the smart grid. Distributed batteries equipped in demand-side can not only contribute to the reliabil...The high penetration of distributed renewable energy raises a higher concern for the safe and economic operation of the smart grid. Distributed batteries equipped in demand-side can not only contribute to the reliability and security of the grid, but also make profits by participating in the electricity market, especially when distributed batteries are combined and operated by an aggregator.Considering the well-operated mechanism of performance based regulation(PBR) in the U.S. electricity market, it becomes increasingly lucrative for batteries to participate not only in energy markets for energy arbitrage, but also in ancillary service markets to provide regulation and peakload shaving services. In this study, distributed batteries are operated and coordinated by the aggregator, which simultaneously submits offers to the energy and the ancillary service markets as an individual entity. An optimaldecision model is formulated for the aggregator to determine the operation and bidding strategy for the distributed batteries by considering the characteristics of batteries,including the terms of capacity, efficiency and degradation cost. Finally, a numerical case is conducted to evaluate the benefits of the decision model.展开更多
The smallest cyclic ammonium salt reported to date, N,N-dimethylpyrrolidinium tetrafluoroborate (P11-BF4), was successively synthesized using a synthesis route without metal ions and halogen ions, then investigated as...The smallest cyclic ammonium salt reported to date, N,N-dimethylpyrrolidinium tetrafluoroborate (P11-BF4), was successively synthesized using a synthesis route without metal ions and halogen ions, then investigated as the electrolyte with Propylene carbonate in EDLCs. The electrochemical characteristics of EDLCs assembled by 1 mol/L P11-BF4/PC paired with activated carbon electrodes were compared to traditional electrolytes. P11-BF4 has proven to have superior voltage resistance by using cyclic voltammetry and constant current charge-discharge testing. Moreover, P11-BF4 exhibits a more brilliant rate performance due to its high conductivity. These results demonstrate that P11-BF4 is an ideal electrolyte to improve the energy density and power density of supercapacitors.展开更多
基金financially supported by the Guangdong Power Grid Co.,Ltd.(Grant No.GDKJXM20160000)。
文摘Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrinsically poor rate performance and rapid capacity deterioration.Here,we remove the roadblock by compositing MnO2 nanorods with highly conductive graphene,which remarkably enhances the electrochemical properties of the MnO2 cathode.Benefiting from the boosted electric conductivity and ion diffusion rate as well as the structural protection of graphene,the Zn//MnO2-graphene battery presents an admirable capacity of 301 mAh g^-1 at 0.5 A g^-1,corresponding to a high energy density of 411.6 Wh kg^-1.Even at a high current density of 10 A g^-1,a decent capacity of 95.8 mAh g^-1 is still obtained,manifesting its excellent rate property.Furthermore,an impressive power density of 15 kW kg^-1 is achieved by the Zn//MnO2-graphene battery.
基金supported by Major International (Regional) Joint Research Project of National Natural Science Foundation of China (No. 51620105007)Scientific Research Project of Guangdong Electric Power Research Institute
文摘The high penetration of distributed renewable energy raises a higher concern for the safe and economic operation of the smart grid. Distributed batteries equipped in demand-side can not only contribute to the reliability and security of the grid, but also make profits by participating in the electricity market, especially when distributed batteries are combined and operated by an aggregator.Considering the well-operated mechanism of performance based regulation(PBR) in the U.S. electricity market, it becomes increasingly lucrative for batteries to participate not only in energy markets for energy arbitrage, but also in ancillary service markets to provide regulation and peakload shaving services. In this study, distributed batteries are operated and coordinated by the aggregator, which simultaneously submits offers to the energy and the ancillary service markets as an individual entity. An optimaldecision model is formulated for the aggregator to determine the operation and bidding strategy for the distributed batteries by considering the characteristics of batteries,including the terms of capacity, efficiency and degradation cost. Finally, a numerical case is conducted to evaluate the benefits of the decision model.
基金financially supported by the Guangdong Power Grid Co., Ltd. (No. GDKJXM20160000)
文摘The smallest cyclic ammonium salt reported to date, N,N-dimethylpyrrolidinium tetrafluoroborate (P11-BF4), was successively synthesized using a synthesis route without metal ions and halogen ions, then investigated as the electrolyte with Propylene carbonate in EDLCs. The electrochemical characteristics of EDLCs assembled by 1 mol/L P11-BF4/PC paired with activated carbon electrodes were compared to traditional electrolytes. P11-BF4 has proven to have superior voltage resistance by using cyclic voltammetry and constant current charge-discharge testing. Moreover, P11-BF4 exhibits a more brilliant rate performance due to its high conductivity. These results demonstrate that P11-BF4 is an ideal electrolyte to improve the energy density and power density of supercapacitors.